1: /*
2: * defines common to all virtual CPUs
3: *
4: * Copyright (c) 2003 Fabrice Bellard
5: *
6: * This library is free software; you can redistribute it and/or
7: * modify it under the terms of the GNU Lesser General Public
8: * License as published by the Free Software Foundation; either
9: * version 2 of the License, or (at your option) any later version.
10: *
11: * This library is distributed in the hope that it will be useful,
12: * but WITHOUT ANY WARRANTY; without even the implied warranty of
13: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14: * Lesser General Public License for more details.
15: *
16: * You should have received a copy of the GNU Lesser General Public
17: * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18: */
19: #ifndef CPU_ALL_H
20: #define CPU_ALL_H
21:
22: #include "qemu-common.h"
23: #include "qemu-tls.h"
24: #include "cpu-common.h"
25:
26: /* some important defines:
27: *
28: * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
29: * memory accesses.
30: *
31: * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
32: * otherwise little endian.
33: *
34: * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
35: *
36: * TARGET_WORDS_BIGENDIAN : same for target cpu
37: */
38:
39: #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
40: #define BSWAP_NEEDED
41: #endif
42:
43: #ifdef BSWAP_NEEDED
44:
45: static inline uint16_t tswap16(uint16_t s)
46: {
47: return bswap16(s);
48: }
49:
50: static inline uint32_t tswap32(uint32_t s)
51: {
52: return bswap32(s);
53: }
54:
55: static inline uint64_t tswap64(uint64_t s)
56: {
57: return bswap64(s);
58: }
59:
60: static inline void tswap16s(uint16_t *s)
61: {
62: *s = bswap16(*s);
63: }
64:
65: static inline void tswap32s(uint32_t *s)
66: {
67: *s = bswap32(*s);
68: }
69:
70: static inline void tswap64s(uint64_t *s)
71: {
72: *s = bswap64(*s);
73: }
74:
75: #else
76:
77: static inline uint16_t tswap16(uint16_t s)
78: {
79: return s;
80: }
81:
82: static inline uint32_t tswap32(uint32_t s)
83: {
84: return s;
85: }
86:
87: static inline uint64_t tswap64(uint64_t s)
88: {
89: return s;
90: }
91:
92: static inline void tswap16s(uint16_t *s)
93: {
94: }
95:
96: static inline void tswap32s(uint32_t *s)
97: {
98: }
99:
100: static inline void tswap64s(uint64_t *s)
101: {
102: }
103:
104: #endif
105:
106: #if TARGET_LONG_SIZE == 4
107: #define tswapl(s) tswap32(s)
108: #define tswapls(s) tswap32s((uint32_t *)(s))
109: #define bswaptls(s) bswap32s(s)
110: #else
111: #define tswapl(s) tswap64(s)
112: #define tswapls(s) tswap64s((uint64_t *)(s))
113: #define bswaptls(s) bswap64s(s)
114: #endif
115:
116: /* CPU memory access without any memory or io remapping */
117:
118: /*
119: * the generic syntax for the memory accesses is:
120: *
121: * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
122: *
123: * store: st{type}{size}{endian}_{access_type}(ptr, val)
124: *
125: * type is:
126: * (empty): integer access
127: * f : float access
128: *
129: * sign is:
130: * (empty): for floats or 32 bit size
131: * u : unsigned
132: * s : signed
133: *
134: * size is:
135: * b: 8 bits
136: * w: 16 bits
137: * l: 32 bits
138: * q: 64 bits
139: *
140: * endian is:
141: * (empty): target cpu endianness or 8 bit access
142: * r : reversed target cpu endianness (not implemented yet)
143: * be : big endian (not implemented yet)
144: * le : little endian (not implemented yet)
145: *
146: * access_type is:
147: * raw : host memory access
148: * user : user mode access using soft MMU
149: * kernel : kernel mode access using soft MMU
150: */
151:
152: /* target-endianness CPU memory access functions */
153: #if defined(TARGET_WORDS_BIGENDIAN)
154: #define lduw_p(p) lduw_be_p(p)
155: #define ldsw_p(p) ldsw_be_p(p)
156: #define ldl_p(p) ldl_be_p(p)
157: #define ldq_p(p) ldq_be_p(p)
158: #define ldfl_p(p) ldfl_be_p(p)
159: #define ldfq_p(p) ldfq_be_p(p)
160: #define stw_p(p, v) stw_be_p(p, v)
161: #define stl_p(p, v) stl_be_p(p, v)
162: #define stq_p(p, v) stq_be_p(p, v)
163: #define stfl_p(p, v) stfl_be_p(p, v)
164: #define stfq_p(p, v) stfq_be_p(p, v)
165: #else
166: #define lduw_p(p) lduw_le_p(p)
167: #define ldsw_p(p) ldsw_le_p(p)
168: #define ldl_p(p) ldl_le_p(p)
169: #define ldq_p(p) ldq_le_p(p)
170: #define ldfl_p(p) ldfl_le_p(p)
171: #define ldfq_p(p) ldfq_le_p(p)
172: #define stw_p(p, v) stw_le_p(p, v)
173: #define stl_p(p, v) stl_le_p(p, v)
174: #define stq_p(p, v) stq_le_p(p, v)
175: #define stfl_p(p, v) stfl_le_p(p, v)
176: #define stfq_p(p, v) stfq_le_p(p, v)
177: #endif
178:
179: /* MMU memory access macros */
180:
181: #if defined(CONFIG_USER_ONLY)
182: #include <assert.h>
183: #include "qemu-types.h"
184:
185: /* On some host systems the guest address space is reserved on the host.
186: * This allows the guest address space to be offset to a convenient location.
187: */
188: #if defined(CONFIG_USE_GUEST_BASE)
189: extern unsigned long guest_base;
190: extern int have_guest_base;
191: extern unsigned long reserved_va;
192: #define GUEST_BASE guest_base
193: #define RESERVED_VA reserved_va
194: #else
195: #define GUEST_BASE 0ul
196: #define RESERVED_VA 0ul
197: #endif
198:
199: /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
200: #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
201:
202: #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
203: #define h2g_valid(x) 1
204: #else
205: #define h2g_valid(x) ({ \
206: unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
207: __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
208: })
209: #endif
210:
211: #define h2g(x) ({ \
212: unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
213: /* Check if given address fits target address space */ \
214: assert(h2g_valid(x)); \
215: (abi_ulong)__ret; \
216: })
217:
218: #define saddr(x) g2h(x)
219: #define laddr(x) g2h(x)
220:
221: #else /* !CONFIG_USER_ONLY */
222: /* NOTE: we use double casts if pointers and target_ulong have
223: different sizes */
224: #define saddr(x) (uint8_t *)(long)(x)
225: #define laddr(x) (uint8_t *)(long)(x)
226: #endif
227:
228: #define ldub_raw(p) ldub_p(laddr((p)))
229: #define ldsb_raw(p) ldsb_p(laddr((p)))
230: #define lduw_raw(p) lduw_p(laddr((p)))
231: #define ldsw_raw(p) ldsw_p(laddr((p)))
232: #define ldl_raw(p) ldl_p(laddr((p)))
233: #define ldq_raw(p) ldq_p(laddr((p)))
234: #define ldfl_raw(p) ldfl_p(laddr((p)))
235: #define ldfq_raw(p) ldfq_p(laddr((p)))
236: #define stb_raw(p, v) stb_p(saddr((p)), v)
237: #define stw_raw(p, v) stw_p(saddr((p)), v)
238: #define stl_raw(p, v) stl_p(saddr((p)), v)
239: #define stq_raw(p, v) stq_p(saddr((p)), v)
240: #define stfl_raw(p, v) stfl_p(saddr((p)), v)
241: #define stfq_raw(p, v) stfq_p(saddr((p)), v)
242:
243:
244: #if defined(CONFIG_USER_ONLY)
245:
246: /* if user mode, no other memory access functions */
247: #define ldub(p) ldub_raw(p)
248: #define ldsb(p) ldsb_raw(p)
249: #define lduw(p) lduw_raw(p)
250: #define ldsw(p) ldsw_raw(p)
251: #define ldl(p) ldl_raw(p)
252: #define ldq(p) ldq_raw(p)
253: #define ldfl(p) ldfl_raw(p)
254: #define ldfq(p) ldfq_raw(p)
255: #define stb(p, v) stb_raw(p, v)
256: #define stw(p, v) stw_raw(p, v)
257: #define stl(p, v) stl_raw(p, v)
258: #define stq(p, v) stq_raw(p, v)
259: #define stfl(p, v) stfl_raw(p, v)
260: #define stfq(p, v) stfq_raw(p, v)
261:
262: #define ldub_code(p) ldub_raw(p)
263: #define ldsb_code(p) ldsb_raw(p)
264: #define lduw_code(p) lduw_raw(p)
265: #define ldsw_code(p) ldsw_raw(p)
266: #define ldl_code(p) ldl_raw(p)
267: #define ldq_code(p) ldq_raw(p)
268:
269: #define ldub_kernel(p) ldub_raw(p)
270: #define ldsb_kernel(p) ldsb_raw(p)
271: #define lduw_kernel(p) lduw_raw(p)
272: #define ldsw_kernel(p) ldsw_raw(p)
273: #define ldl_kernel(p) ldl_raw(p)
274: #define ldq_kernel(p) ldq_raw(p)
275: #define ldfl_kernel(p) ldfl_raw(p)
276: #define ldfq_kernel(p) ldfq_raw(p)
277: #define stb_kernel(p, v) stb_raw(p, v)
278: #define stw_kernel(p, v) stw_raw(p, v)
279: #define stl_kernel(p, v) stl_raw(p, v)
280: #define stq_kernel(p, v) stq_raw(p, v)
281: #define stfl_kernel(p, v) stfl_raw(p, v)
282: #define stfq_kernel(p, vt) stfq_raw(p, v)
283:
284: #endif /* defined(CONFIG_USER_ONLY) */
285:
286: /* page related stuff */
287:
288: #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
289: #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
290: #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
291:
292: /* ??? These should be the larger of unsigned long and target_ulong. */
293: extern unsigned long qemu_real_host_page_size;
294: extern unsigned long qemu_host_page_size;
295: extern unsigned long qemu_host_page_mask;
296:
297: #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
298:
299: /* same as PROT_xxx */
300: #define PAGE_READ 0x0001
301: #define PAGE_WRITE 0x0002
302: #define PAGE_EXEC 0x0004
303: #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
304: #define PAGE_VALID 0x0008
305: /* original state of the write flag (used when tracking self-modifying
306: code */
307: #define PAGE_WRITE_ORG 0x0010
308: #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
309: /* FIXME: Code that sets/uses this is broken and needs to go away. */
310: #define PAGE_RESERVED 0x0020
311: #endif
312:
313: #if defined(CONFIG_USER_ONLY)
314: void page_dump(FILE *f);
315:
316: typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
317: abi_ulong, unsigned long);
318: int walk_memory_regions(void *, walk_memory_regions_fn);
319:
320: int page_get_flags(target_ulong address);
321: void page_set_flags(target_ulong start, target_ulong end, int flags);
322: int page_check_range(target_ulong start, target_ulong len, int flags);
323: #endif
324:
325: CPUState *cpu_copy(CPUState *env);
326: CPUState *qemu_get_cpu(int cpu);
327:
328: #define CPU_DUMP_CODE 0x00010000
329:
330: void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
331: int flags);
332: void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
333: int flags);
334:
335: void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
336: GCC_FMT_ATTR(2, 3);
337: extern CPUState *first_cpu;
338: DECLARE_TLS(CPUState *,cpu_single_env);
339: #define cpu_single_env get_tls(cpu_single_env)
340:
341: /* Flags for use in ENV->INTERRUPT_PENDING.
342:
343: The numbers assigned here are non-sequential in order to preserve
344: binary compatibility with the vmstate dump. Bit 0 (0x0001) was
345: previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
346: the vmstate dump. */
347:
348: /* External hardware interrupt pending. This is typically used for
349: interrupts from devices. */
350: #define CPU_INTERRUPT_HARD 0x0002
351:
352: /* Exit the current TB. This is typically used when some system-level device
353: makes some change to the memory mapping. E.g. the a20 line change. */
354: #define CPU_INTERRUPT_EXITTB 0x0004
355:
356: /* Halt the CPU. */
357: #define CPU_INTERRUPT_HALT 0x0020
358:
359: /* Debug event pending. */
360: #define CPU_INTERRUPT_DEBUG 0x0080
361:
362: /* Several target-specific external hardware interrupts. Each target/cpu.h
363: should define proper names based on these defines. */
364: #define CPU_INTERRUPT_TGT_EXT_0 0x0008
365: #define CPU_INTERRUPT_TGT_EXT_1 0x0010
366: #define CPU_INTERRUPT_TGT_EXT_2 0x0040
367: #define CPU_INTERRUPT_TGT_EXT_3 0x0200
368: #define CPU_INTERRUPT_TGT_EXT_4 0x1000
369:
370: /* Several target-specific internal interrupts. These differ from the
371: preceeding target-specific interrupts in that they are intended to
372: originate from within the cpu itself, typically in response to some
373: instruction being executed. These, therefore, are not masked while
374: single-stepping within the debugger. */
375: #define CPU_INTERRUPT_TGT_INT_0 0x0100
376: #define CPU_INTERRUPT_TGT_INT_1 0x0400
377: #define CPU_INTERRUPT_TGT_INT_2 0x0800
378:
379: /* First unused bit: 0x2000. */
380:
381: /* The set of all bits that should be masked when single-stepping. */
382: #define CPU_INTERRUPT_SSTEP_MASK \
383: (CPU_INTERRUPT_HARD \
384: | CPU_INTERRUPT_TGT_EXT_0 \
385: | CPU_INTERRUPT_TGT_EXT_1 \
386: | CPU_INTERRUPT_TGT_EXT_2 \
387: | CPU_INTERRUPT_TGT_EXT_3 \
388: | CPU_INTERRUPT_TGT_EXT_4)
389:
390: #ifndef CONFIG_USER_ONLY
391: typedef void (*CPUInterruptHandler)(CPUState *, int);
392:
393: extern CPUInterruptHandler cpu_interrupt_handler;
394:
395: static inline void cpu_interrupt(CPUState *s, int mask)
396: {
397: cpu_interrupt_handler(s, mask);
398: }
399: #else /* USER_ONLY */
400: void cpu_interrupt(CPUState *env, int mask);
401: #endif /* USER_ONLY */
402:
403: void cpu_reset_interrupt(CPUState *env, int mask);
404:
405: void cpu_exit(CPUState *s);
406:
407: bool qemu_cpu_has_work(CPUState *env);
408:
409: /* Breakpoint/watchpoint flags */
410: #define BP_MEM_READ 0x01
411: #define BP_MEM_WRITE 0x02
412: #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
413: #define BP_STOP_BEFORE_ACCESS 0x04
414: #define BP_WATCHPOINT_HIT 0x08
415: #define BP_GDB 0x10
416: #define BP_CPU 0x20
417:
418: int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
419: CPUBreakpoint **breakpoint);
420: int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
421: void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
422: void cpu_breakpoint_remove_all(CPUState *env, int mask);
423: int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
424: int flags, CPUWatchpoint **watchpoint);
425: int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
426: target_ulong len, int flags);
427: void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
428: void cpu_watchpoint_remove_all(CPUState *env, int mask);
429:
430: #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
431: #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
432: #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
433:
434: void cpu_single_step(CPUState *env, int enabled);
435: void cpu_reset(CPUState *s);
436: int cpu_is_stopped(CPUState *env);
437: void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
438:
439: #define CPU_LOG_TB_OUT_ASM (1 << 0)
440: #define CPU_LOG_TB_IN_ASM (1 << 1)
441: #define CPU_LOG_TB_OP (1 << 2)
442: #define CPU_LOG_TB_OP_OPT (1 << 3)
443: #define CPU_LOG_INT (1 << 4)
444: #define CPU_LOG_EXEC (1 << 5)
445: #define CPU_LOG_PCALL (1 << 6)
446: #define CPU_LOG_IOPORT (1 << 7)
447: #define CPU_LOG_TB_CPU (1 << 8)
448: #define CPU_LOG_RESET (1 << 9)
449:
450: /* define log items */
451: typedef struct CPULogItem {
452: int mask;
453: const char *name;
454: const char *help;
455: } CPULogItem;
456:
457: extern const CPULogItem cpu_log_items[];
458:
459: void cpu_set_log(int log_flags);
460: void cpu_set_log_filename(const char *filename);
461: int cpu_str_to_log_mask(const char *str);
462:
463: #if !defined(CONFIG_USER_ONLY)
464:
465: /* Return the physical page corresponding to a virtual one. Use it
466: only for debugging because no protection checks are done. Return -1
467: if no page found. */
468: target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
469:
470: /* memory API */
471:
472: extern int phys_ram_fd;
473: extern ram_addr_t ram_size;
474:
475: /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
476: #define RAM_PREALLOC_MASK (1 << 0)
477:
478: typedef struct RAMBlock {
479: uint8_t *host;
480: ram_addr_t offset;
481: ram_addr_t length;
482: uint32_t flags;
483: char idstr[256];
484: QLIST_ENTRY(RAMBlock) next;
485: #if defined(__linux__) && !defined(TARGET_S390X)
486: int fd;
487: #endif
488: } RAMBlock;
489:
490: typedef struct RAMList {
491: uint8_t *phys_dirty;
492: QLIST_HEAD(, RAMBlock) blocks;
493: } RAMList;
494: extern RAMList ram_list;
495:
496: extern const char *mem_path;
497: extern int mem_prealloc;
498:
499: /* physical memory access */
500:
501: /* MMIO pages are identified by a combination of an IO device index and
502: 3 flags. The ROMD code stores the page ram offset in iotlb entry,
503: so only a limited number of ids are avaiable. */
504:
505: #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
506:
507: /* Flags stored in the low bits of the TLB virtual address. These are
508: defined so that fast path ram access is all zeros. */
509: /* Zero if TLB entry is valid. */
510: #define TLB_INVALID_MASK (1 << 3)
511: /* Set if TLB entry references a clean RAM page. The iotlb entry will
512: contain the page physical address. */
513: #define TLB_NOTDIRTY (1 << 4)
514: /* Set if TLB entry is an IO callback. */
515: #define TLB_MMIO (1 << 5)
516:
517: #define VGA_DIRTY_FLAG 0x01
518: #define CODE_DIRTY_FLAG 0x02
519: #define MIGRATION_DIRTY_FLAG 0x08
520:
521: /* read dirty bit (return 0 or 1) */
522: static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
523: {
524: return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
525: }
526:
527: static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
528: {
529: return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
530: }
531:
532: static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
533: int dirty_flags)
534: {
535: return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
536: }
537:
538: static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
539: {
540: ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
541: }
542:
543: static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
544: int dirty_flags)
545: {
546: return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
547: }
548:
549: static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
550: int length,
551: int dirty_flags)
552: {
553: int i, mask, len;
554: uint8_t *p;
555:
556: len = length >> TARGET_PAGE_BITS;
557: mask = ~dirty_flags;
558: p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
559: for (i = 0; i < len; i++) {
560: p[i] &= mask;
561: }
562: }
563:
564: void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
565: int dirty_flags);
566: void cpu_tlb_update_dirty(CPUState *env);
567:
568: int cpu_physical_memory_set_dirty_tracking(int enable);
569:
570: int cpu_physical_memory_get_dirty_tracking(void);
571:
572: int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
573: target_phys_addr_t end_addr);
574:
575: int cpu_physical_log_start(target_phys_addr_t start_addr,
576: ram_addr_t size);
577:
578: int cpu_physical_log_stop(target_phys_addr_t start_addr,
579: ram_addr_t size);
580:
581: void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
582: #endif /* !CONFIG_USER_ONLY */
583:
584: int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
585: uint8_t *buf, int len, int is_write);
586:
587: #endif /* CPU_ALL_H */
unix.superglobalmegacorp.com