Annotation of qemu/cpu-exec.c, revision 1.1.1.6
1.1 root 1: /*
2: * i386 emulator main execution loop
1.1.1.6 ! root 3: *
1.1 root 4: * Copyright (c) 2003-2005 Fabrice Bellard
5: *
6: * This library is free software; you can redistribute it and/or
7: * modify it under the terms of the GNU Lesser General Public
8: * License as published by the Free Software Foundation; either
9: * version 2 of the License, or (at your option) any later version.
10: *
11: * This library is distributed in the hope that it will be useful,
12: * but WITHOUT ANY WARRANTY; without even the implied warranty of
13: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14: * Lesser General Public License for more details.
15: *
16: * You should have received a copy of the GNU Lesser General Public
17: * License along with this library; if not, write to the Free Software
18: * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19: */
20: #include "config.h"
21: #include "exec.h"
22: #include "disas.h"
23:
24: #if !defined(CONFIG_SOFTMMU)
25: #undef EAX
26: #undef ECX
27: #undef EDX
28: #undef EBX
29: #undef ESP
30: #undef EBP
31: #undef ESI
32: #undef EDI
33: #undef EIP
34: #include <signal.h>
35: #include <sys/ucontext.h>
36: #endif
37:
38: int tb_invalidated_flag;
39:
40: //#define DEBUG_EXEC
41: //#define DEBUG_SIGNAL
42:
1.1.1.6 ! root 43: #define SAVE_GLOBALS()
! 44: #define RESTORE_GLOBALS()
! 45:
! 46: #if defined(__sparc__) && !defined(HOST_SOLARIS)
! 47: #include <features.h>
! 48: #if defined(__GLIBC__) && ((__GLIBC__ < 2) || \
! 49: ((__GLIBC__ == 2) && (__GLIBC_MINOR__ <= 90)))
! 50: // Work around ugly bugs in glibc that mangle global register contents
! 51:
! 52: static volatile void *saved_env;
! 53: static volatile unsigned long saved_t0, saved_i7;
! 54: #undef SAVE_GLOBALS
! 55: #define SAVE_GLOBALS() do { \
! 56: saved_env = env; \
! 57: saved_t0 = T0; \
! 58: asm volatile ("st %%i7, [%0]" : : "r" (&saved_i7)); \
! 59: } while(0)
! 60:
! 61: #undef RESTORE_GLOBALS
! 62: #define RESTORE_GLOBALS() do { \
! 63: env = (void *)saved_env; \
! 64: T0 = saved_t0; \
! 65: asm volatile ("ld [%0], %%i7" : : "r" (&saved_i7)); \
! 66: } while(0)
! 67:
! 68: static int sparc_setjmp(jmp_buf buf)
! 69: {
! 70: int ret;
! 71:
! 72: SAVE_GLOBALS();
! 73: ret = setjmp(buf);
! 74: RESTORE_GLOBALS();
! 75: return ret;
! 76: }
! 77: #undef setjmp
! 78: #define setjmp(jmp_buf) sparc_setjmp(jmp_buf)
! 79:
! 80: static void sparc_longjmp(jmp_buf buf, int val)
! 81: {
! 82: SAVE_GLOBALS();
! 83: longjmp(buf, val);
! 84: }
! 85: #define longjmp(jmp_buf, val) sparc_longjmp(jmp_buf, val)
! 86: #endif
! 87: #endif
! 88:
1.1 root 89: void cpu_loop_exit(void)
90: {
1.1.1.6 ! root 91: /* NOTE: the register at this point must be saved by hand because
! 92: longjmp restore them */
! 93: regs_to_env();
1.1 root 94: longjmp(env->jmp_env, 1);
95: }
1.1.1.6 ! root 96:
1.1.1.5 root 97: #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
1.1 root 98: #define reg_T2
99: #endif
100:
101: /* exit the current TB from a signal handler. The host registers are
102: restored in a state compatible with the CPU emulator
103: */
1.1.1.6 ! root 104: void cpu_resume_from_signal(CPUState *env1, void *puc)
1.1 root 105: {
106: #if !defined(CONFIG_SOFTMMU)
107: struct ucontext *uc = puc;
108: #endif
109:
110: env = env1;
111:
112: /* XXX: restore cpu registers saved in host registers */
113:
114: #if !defined(CONFIG_SOFTMMU)
115: if (puc) {
116: /* XXX: use siglongjmp ? */
117: sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
118: }
119: #endif
120: longjmp(env->jmp_env, 1);
121: }
122:
1.1.1.2 root 123:
124: static TranslationBlock *tb_find_slow(target_ulong pc,
125: target_ulong cs_base,
1.1.1.6 ! root 126: uint64_t flags)
1.1.1.2 root 127: {
128: TranslationBlock *tb, **ptb1;
129: int code_gen_size;
130: unsigned int h;
131: target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
132: uint8_t *tc_ptr;
1.1.1.6 ! root 133:
1.1.1.2 root 134: spin_lock(&tb_lock);
135:
136: tb_invalidated_flag = 0;
1.1.1.6 ! root 137:
1.1.1.2 root 138: regs_to_env(); /* XXX: do it just before cpu_gen_code() */
1.1.1.6 ! root 139:
1.1.1.2 root 140: /* find translated block using physical mappings */
141: phys_pc = get_phys_addr_code(env, pc);
142: phys_page1 = phys_pc & TARGET_PAGE_MASK;
143: phys_page2 = -1;
144: h = tb_phys_hash_func(phys_pc);
145: ptb1 = &tb_phys_hash[h];
146: for(;;) {
147: tb = *ptb1;
148: if (!tb)
149: goto not_found;
1.1.1.6 ! root 150: if (tb->pc == pc &&
1.1.1.2 root 151: tb->page_addr[0] == phys_page1 &&
1.1.1.6 ! root 152: tb->cs_base == cs_base &&
1.1.1.2 root 153: tb->flags == flags) {
154: /* check next page if needed */
155: if (tb->page_addr[1] != -1) {
1.1.1.6 ! root 156: virt_page2 = (pc & TARGET_PAGE_MASK) +
1.1.1.2 root 157: TARGET_PAGE_SIZE;
158: phys_page2 = get_phys_addr_code(env, virt_page2);
159: if (tb->page_addr[1] == phys_page2)
160: goto found;
161: } else {
162: goto found;
163: }
164: }
165: ptb1 = &tb->phys_hash_next;
166: }
167: not_found:
168: /* if no translated code available, then translate it now */
169: tb = tb_alloc(pc);
170: if (!tb) {
171: /* flush must be done */
172: tb_flush(env);
173: /* cannot fail at this point */
174: tb = tb_alloc(pc);
175: /* don't forget to invalidate previous TB info */
176: tb_invalidated_flag = 1;
177: }
178: tc_ptr = code_gen_ptr;
179: tb->tc_ptr = tc_ptr;
180: tb->cs_base = cs_base;
181: tb->flags = flags;
1.1.1.6 ! root 182: SAVE_GLOBALS();
! 183: cpu_gen_code(env, tb, &code_gen_size);
! 184: RESTORE_GLOBALS();
1.1.1.2 root 185: code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1.1.1.6 ! root 186:
1.1.1.2 root 187: /* check next page if needed */
188: virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
189: phys_page2 = -1;
190: if ((pc & TARGET_PAGE_MASK) != virt_page2) {
191: phys_page2 = get_phys_addr_code(env, virt_page2);
192: }
193: tb_link_phys(tb, phys_pc, phys_page2);
1.1.1.6 ! root 194:
1.1.1.2 root 195: found:
196: /* we add the TB in the virtual pc hash table */
197: env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
198: spin_unlock(&tb_lock);
199: return tb;
200: }
201:
202: static inline TranslationBlock *tb_find_fast(void)
203: {
204: TranslationBlock *tb;
205: target_ulong cs_base, pc;
1.1.1.6 ! root 206: uint64_t flags;
1.1.1.2 root 207:
208: /* we record a subset of the CPU state. It will
209: always be the same before a given translated block
210: is executed. */
211: #if defined(TARGET_I386)
212: flags = env->hflags;
213: flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
1.1.1.6 ! root 214: flags |= env->intercept;
1.1.1.2 root 215: cs_base = env->segs[R_CS].base;
216: pc = cs_base + env->eip;
217: #elif defined(TARGET_ARM)
218: flags = env->thumb | (env->vfp.vec_len << 1)
219: | (env->vfp.vec_stride << 4);
220: if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
221: flags |= (1 << 6);
1.1.1.3 root 222: if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
223: flags |= (1 << 7);
1.1.1.6 ! root 224: flags |= (env->condexec_bits << 8);
1.1.1.2 root 225: cs_base = 0;
226: pc = env->regs[15];
227: #elif defined(TARGET_SPARC)
228: #ifdef TARGET_SPARC64
1.1.1.4 root 229: // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
230: flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
231: | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
1.1.1.2 root 232: #else
1.1.1.6 ! root 233: // FPU enable . Supervisor
! 234: flags = (env->psref << 4) | env->psrs;
1.1.1.2 root 235: #endif
236: cs_base = env->npc;
237: pc = env->pc;
238: #elif defined(TARGET_PPC)
1.1.1.6 ! root 239: flags = env->hflags;
1.1.1.2 root 240: cs_base = 0;
241: pc = env->nip;
242: #elif defined(TARGET_MIPS)
1.1.1.3 root 243: flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
1.1.1.2 root 244: cs_base = 0;
1.1.1.6 ! root 245: pc = env->PC[env->current_tc];
1.1.1.5 root 246: #elif defined(TARGET_M68K)
1.1.1.6 ! root 247: flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
! 248: | (env->sr & SR_S) /* Bit 13 */
! 249: | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
1.1.1.5 root 250: cs_base = 0;
251: pc = env->pc;
1.1.1.3 root 252: #elif defined(TARGET_SH4)
1.1.1.6 ! root 253: flags = env->flags;
! 254: cs_base = 0;
! 255: pc = env->pc;
! 256: #elif defined(TARGET_ALPHA)
! 257: flags = env->ps;
! 258: cs_base = 0;
! 259: pc = env->pc;
! 260: #elif defined(TARGET_CRIS)
! 261: flags = 0;
! 262: cs_base = 0;
1.1.1.3 root 263: pc = env->pc;
1.1.1.2 root 264: #else
265: #error unsupported CPU
266: #endif
267: tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
268: if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
269: tb->flags != flags, 0)) {
270: tb = tb_find_slow(pc, cs_base, flags);
271: /* Note: we do it here to avoid a gcc bug on Mac OS X when
272: doing it in tb_find_slow */
273: if (tb_invalidated_flag) {
274: /* as some TB could have been invalidated because
275: of memory exceptions while generating the code, we
276: must recompute the hash index here */
277: T0 = 0;
278: }
279: }
280: return tb;
281: }
282:
1.1.1.6 ! root 283: #define BREAK_CHAIN T0 = 0
1.1.1.2 root 284:
1.1 root 285: /* main execution loop */
286:
287: int cpu_exec(CPUState *env1)
288: {
1.1.1.5 root 289: #define DECLARE_HOST_REGS 1
290: #include "hostregs_helper.h"
291: #if defined(TARGET_SPARC)
1.1 root 292: #if defined(reg_REGWPTR)
293: uint32_t *saved_regwptr;
294: #endif
295: #endif
1.1.1.2 root 296: int ret, interrupt_request;
1.1 root 297: void (*gen_func)(void);
1.1.1.2 root 298: TranslationBlock *tb;
1.1 root 299: uint8_t *tc_ptr;
1.1.1.2 root 300:
1.1.1.6 ! root 301: if (cpu_halted(env1) == EXCP_HALTED)
! 302: return EXCP_HALTED;
1.1.1.2 root 303:
1.1.1.6 ! root 304: cpu_single_env = env1;
1.1 root 305:
306: /* first we save global registers */
1.1.1.5 root 307: #define SAVE_HOST_REGS 1
308: #include "hostregs_helper.h"
1.1 root 309: env = env1;
1.1.1.6 ! root 310: SAVE_GLOBALS();
1.1 root 311:
312: env_to_regs();
1.1.1.6 ! root 313: #if defined(TARGET_I386)
1.1 root 314: /* put eflags in CPU temporary format */
315: CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
316: DF = 1 - (2 * ((env->eflags >> 10) & 1));
317: CC_OP = CC_OP_EFLAGS;
318: env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
319: #elif defined(TARGET_SPARC)
320: #if defined(reg_REGWPTR)
321: saved_regwptr = REGWPTR;
322: #endif
1.1.1.5 root 323: #elif defined(TARGET_M68K)
324: env->cc_op = CC_OP_FLAGS;
325: env->cc_dest = env->sr & 0xf;
326: env->cc_x = (env->sr >> 4) & 1;
1.1.1.6 ! root 327: #elif defined(TARGET_ALPHA)
! 328: #elif defined(TARGET_ARM)
! 329: #elif defined(TARGET_PPC)
1.1 root 330: #elif defined(TARGET_MIPS)
1.1.1.3 root 331: #elif defined(TARGET_SH4)
1.1.1.6 ! root 332: #elif defined(TARGET_CRIS)
1.1.1.3 root 333: /* XXXXX */
1.1 root 334: #else
335: #error unsupported target CPU
336: #endif
337: env->exception_index = -1;
338:
339: /* prepare setjmp context for exception handling */
340: for(;;) {
341: if (setjmp(env->jmp_env) == 0) {
342: env->current_tb = NULL;
343: /* if an exception is pending, we execute it here */
344: if (env->exception_index >= 0) {
345: if (env->exception_index >= EXCP_INTERRUPT) {
346: /* exit request from the cpu execution loop */
347: ret = env->exception_index;
348: break;
349: } else if (env->user_mode_only) {
350: /* if user mode only, we simulate a fake exception
1.1.1.5 root 351: which will be handled outside the cpu execution
1.1 root 352: loop */
353: #if defined(TARGET_I386)
1.1.1.6 ! root 354: do_interrupt_user(env->exception_index,
! 355: env->exception_is_int,
! 356: env->error_code,
1.1 root 357: env->exception_next_eip);
358: #endif
359: ret = env->exception_index;
360: break;
361: } else {
362: #if defined(TARGET_I386)
363: /* simulate a real cpu exception. On i386, it can
364: trigger new exceptions, but we do not handle
365: double or triple faults yet. */
1.1.1.6 ! root 366: do_interrupt(env->exception_index,
! 367: env->exception_is_int,
! 368: env->error_code,
1.1 root 369: env->exception_next_eip, 0);
1.1.1.6 ! root 370: /* successfully delivered */
! 371: env->old_exception = -1;
1.1 root 372: #elif defined(TARGET_PPC)
373: do_interrupt(env);
374: #elif defined(TARGET_MIPS)
375: do_interrupt(env);
376: #elif defined(TARGET_SPARC)
377: do_interrupt(env->exception_index);
1.1.1.2 root 378: #elif defined(TARGET_ARM)
379: do_interrupt(env);
1.1.1.3 root 380: #elif defined(TARGET_SH4)
381: do_interrupt(env);
1.1.1.6 ! root 382: #elif defined(TARGET_ALPHA)
! 383: do_interrupt(env);
! 384: #elif defined(TARGET_CRIS)
! 385: do_interrupt(env);
! 386: #elif defined(TARGET_M68K)
! 387: do_interrupt(0);
1.1 root 388: #endif
389: }
390: env->exception_index = -1;
1.1.1.6 ! root 391: }
1.1 root 392: #ifdef USE_KQEMU
393: if (kqemu_is_ok(env) && env->interrupt_request == 0) {
394: int ret;
395: env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
396: ret = kqemu_cpu_exec(env);
397: /* put eflags in CPU temporary format */
398: CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
399: DF = 1 - (2 * ((env->eflags >> 10) & 1));
400: CC_OP = CC_OP_EFLAGS;
401: env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
402: if (ret == 1) {
403: /* exception */
404: longjmp(env->jmp_env, 1);
405: } else if (ret == 2) {
406: /* softmmu execution needed */
407: } else {
408: if (env->interrupt_request != 0) {
409: /* hardware interrupt will be executed just after */
410: } else {
411: /* otherwise, we restart */
412: longjmp(env->jmp_env, 1);
413: }
414: }
415: }
416: #endif
417:
418: T0 = 0; /* force lookup of first TB */
419: for(;;) {
1.1.1.6 ! root 420: SAVE_GLOBALS();
1.1 root 421: interrupt_request = env->interrupt_request;
1.1.1.6 ! root 422: if (__builtin_expect(interrupt_request, 0)
! 423: #if defined(TARGET_I386)
! 424: && env->hflags & HF_GIF_MASK
! 425: #endif
! 426: ) {
! 427: if (interrupt_request & CPU_INTERRUPT_DEBUG) {
! 428: env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
! 429: env->exception_index = EXCP_DEBUG;
! 430: cpu_loop_exit();
! 431: }
! 432: #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
! 433: defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
! 434: if (interrupt_request & CPU_INTERRUPT_HALT) {
! 435: env->interrupt_request &= ~CPU_INTERRUPT_HALT;
! 436: env->halted = 1;
! 437: env->exception_index = EXCP_HLT;
! 438: cpu_loop_exit();
! 439: }
! 440: #endif
1.1 root 441: #if defined(TARGET_I386)
1.1.1.5 root 442: if ((interrupt_request & CPU_INTERRUPT_SMI) &&
443: !(env->hflags & HF_SMM_MASK)) {
1.1.1.6 ! root 444: svm_check_intercept(SVM_EXIT_SMI);
1.1.1.5 root 445: env->interrupt_request &= ~CPU_INTERRUPT_SMI;
446: do_smm_enter();
1.1.1.6 ! root 447: BREAK_CHAIN;
1.1.1.5 root 448: } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
1.1.1.6 ! root 449: (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
1.1 root 450: !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
451: int intno;
1.1.1.6 ! root 452: svm_check_intercept(SVM_EXIT_INTR);
! 453: env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
1.1 root 454: intno = cpu_get_pic_interrupt(env);
455: if (loglevel & CPU_LOG_TB_IN_ASM) {
456: fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
457: }
458: do_interrupt(intno, 0, 0, 0, 1);
459: /* ensure that no TB jump will be modified as
460: the program flow was changed */
1.1.1.6 ! root 461: BREAK_CHAIN;
! 462: #if !defined(CONFIG_USER_ONLY)
! 463: } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
! 464: (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
! 465: int intno;
! 466: /* FIXME: this should respect TPR */
! 467: env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
! 468: svm_check_intercept(SVM_EXIT_VINTR);
! 469: intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
! 470: if (loglevel & CPU_LOG_TB_IN_ASM)
! 471: fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
! 472: do_interrupt(intno, 0, 0, -1, 1);
! 473: stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
! 474: ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
! 475: BREAK_CHAIN;
1.1 root 476: #endif
477: }
478: #elif defined(TARGET_PPC)
479: #if 0
480: if ((interrupt_request & CPU_INTERRUPT_RESET)) {
481: cpu_ppc_reset(env);
482: }
483: #endif
1.1.1.6 ! root 484: if (interrupt_request & CPU_INTERRUPT_HARD) {
! 485: ppc_hw_interrupt(env);
! 486: if (env->pending_interrupts == 0)
1.1.1.2 root 487: env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1.1.1.6 ! root 488: BREAK_CHAIN;
1.1 root 489: }
490: #elif defined(TARGET_MIPS)
491: if ((interrupt_request & CPU_INTERRUPT_HARD) &&
1.1.1.6 ! root 492: (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
1.1 root 493: (env->CP0_Status & (1 << CP0St_IE)) &&
1.1.1.6 ! root 494: !(env->CP0_Status & (1 << CP0St_EXL)) &&
! 495: !(env->CP0_Status & (1 << CP0St_ERL)) &&
1.1 root 496: !(env->hflags & MIPS_HFLAG_DM)) {
497: /* Raise it */
498: env->exception_index = EXCP_EXT_INTERRUPT;
499: env->error_code = 0;
500: do_interrupt(env);
1.1.1.6 ! root 501: BREAK_CHAIN;
1.1 root 502: }
503: #elif defined(TARGET_SPARC)
504: if ((interrupt_request & CPU_INTERRUPT_HARD) &&
505: (env->psret != 0)) {
506: int pil = env->interrupt_index & 15;
507: int type = env->interrupt_index & 0xf0;
508:
509: if (((type == TT_EXTINT) &&
510: (pil == 15 || pil > env->psrpil)) ||
511: type != TT_EXTINT) {
512: env->interrupt_request &= ~CPU_INTERRUPT_HARD;
513: do_interrupt(env->interrupt_index);
514: env->interrupt_index = 0;
1.1.1.6 ! root 515: #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
! 516: cpu_check_irqs(env);
1.1.1.2 root 517: #endif
1.1.1.6 ! root 518: BREAK_CHAIN;
1.1 root 519: }
520: } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
521: //do_interrupt(0, 0, 0, 0, 0);
522: env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
1.1.1.6 ! root 523: }
1.1.1.2 root 524: #elif defined(TARGET_ARM)
525: if (interrupt_request & CPU_INTERRUPT_FIQ
526: && !(env->uncached_cpsr & CPSR_F)) {
527: env->exception_index = EXCP_FIQ;
528: do_interrupt(env);
1.1.1.6 ! root 529: BREAK_CHAIN;
1.1.1.2 root 530: }
1.1.1.6 ! root 531: /* ARMv7-M interrupt return works by loading a magic value
! 532: into the PC. On real hardware the load causes the
! 533: return to occur. The qemu implementation performs the
! 534: jump normally, then does the exception return when the
! 535: CPU tries to execute code at the magic address.
! 536: This will cause the magic PC value to be pushed to
! 537: the stack if an interrupt occured at the wrong time.
! 538: We avoid this by disabling interrupts when
! 539: pc contains a magic address. */
1.1.1.2 root 540: if (interrupt_request & CPU_INTERRUPT_HARD
1.1.1.6 ! root 541: && ((IS_M(env) && env->regs[15] < 0xfffffff0)
! 542: || !(env->uncached_cpsr & CPSR_I))) {
1.1.1.2 root 543: env->exception_index = EXCP_IRQ;
544: do_interrupt(env);
1.1.1.6 ! root 545: BREAK_CHAIN;
1.1.1.2 root 546: }
1.1.1.3 root 547: #elif defined(TARGET_SH4)
1.1.1.6 ! root 548: if (interrupt_request & CPU_INTERRUPT_HARD) {
! 549: do_interrupt(env);
! 550: BREAK_CHAIN;
! 551: }
! 552: #elif defined(TARGET_ALPHA)
! 553: if (interrupt_request & CPU_INTERRUPT_HARD) {
! 554: do_interrupt(env);
! 555: BREAK_CHAIN;
! 556: }
! 557: #elif defined(TARGET_CRIS)
! 558: if (interrupt_request & CPU_INTERRUPT_HARD) {
! 559: do_interrupt(env);
! 560: env->interrupt_request &= ~CPU_INTERRUPT_HARD;
! 561: BREAK_CHAIN;
! 562: }
! 563: #elif defined(TARGET_M68K)
! 564: if (interrupt_request & CPU_INTERRUPT_HARD
! 565: && ((env->sr & SR_I) >> SR_I_SHIFT)
! 566: < env->pending_level) {
! 567: /* Real hardware gets the interrupt vector via an
! 568: IACK cycle at this point. Current emulated
! 569: hardware doesn't rely on this, so we
! 570: provide/save the vector when the interrupt is
! 571: first signalled. */
! 572: env->exception_index = env->pending_vector;
! 573: do_interrupt(1);
! 574: BREAK_CHAIN;
! 575: }
1.1 root 576: #endif
1.1.1.4 root 577: /* Don't use the cached interupt_request value,
578: do_interrupt may have updated the EXITTB flag. */
1.1.1.2 root 579: if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
1.1 root 580: env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
581: /* ensure that no TB jump will be modified as
582: the program flow was changed */
1.1.1.6 ! root 583: BREAK_CHAIN;
1.1 root 584: }
585: if (interrupt_request & CPU_INTERRUPT_EXIT) {
586: env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
587: env->exception_index = EXCP_INTERRUPT;
588: cpu_loop_exit();
589: }
590: }
591: #ifdef DEBUG_EXEC
1.1.1.2 root 592: if ((loglevel & CPU_LOG_TB_CPU)) {
1.1 root 593: /* restore flags in standard format */
1.1.1.6 ! root 594: regs_to_env();
! 595: #if defined(TARGET_I386)
1.1 root 596: env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
597: cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
598: env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
599: #elif defined(TARGET_ARM)
600: cpu_dump_state(env, logfile, fprintf, 0);
601: #elif defined(TARGET_SPARC)
602: REGWPTR = env->regbase + (env->cwp * 16);
603: env->regwptr = REGWPTR;
604: cpu_dump_state(env, logfile, fprintf, 0);
605: #elif defined(TARGET_PPC)
606: cpu_dump_state(env, logfile, fprintf, 0);
1.1.1.5 root 607: #elif defined(TARGET_M68K)
608: cpu_m68k_flush_flags(env, env->cc_op);
609: env->cc_op = CC_OP_FLAGS;
610: env->sr = (env->sr & 0xffe0)
611: | env->cc_dest | (env->cc_x << 4);
612: cpu_dump_state(env, logfile, fprintf, 0);
1.1 root 613: #elif defined(TARGET_MIPS)
614: cpu_dump_state(env, logfile, fprintf, 0);
1.1.1.3 root 615: #elif defined(TARGET_SH4)
616: cpu_dump_state(env, logfile, fprintf, 0);
1.1.1.6 ! root 617: #elif defined(TARGET_ALPHA)
! 618: cpu_dump_state(env, logfile, fprintf, 0);
! 619: #elif defined(TARGET_CRIS)
! 620: cpu_dump_state(env, logfile, fprintf, 0);
1.1 root 621: #else
1.1.1.6 ! root 622: #error unsupported target CPU
1.1 root 623: #endif
624: }
625: #endif
1.1.1.2 root 626: tb = tb_find_fast();
1.1 root 627: #ifdef DEBUG_EXEC
628: if ((loglevel & CPU_LOG_EXEC)) {
629: fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
630: (long)tb->tc_ptr, tb->pc,
631: lookup_symbol(tb->pc));
632: }
633: #endif
1.1.1.6 ! root 634: RESTORE_GLOBALS();
1.1.1.2 root 635: /* see if we can patch the calling TB. When the TB
636: spans two pages, we cannot safely do a direct
637: jump. */
1.1 root 638: {
1.1.1.2 root 639: if (T0 != 0 &&
1.1.1.3 root 640: #if USE_KQEMU
641: (env->kqemu_enabled != 2) &&
642: #endif
1.1.1.6 ! root 643: tb->page_addr[1] == -1) {
1.1 root 644: spin_lock(&tb_lock);
645: tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
646: spin_unlock(&tb_lock);
647: }
648: }
649: tc_ptr = tb->tc_ptr;
650: env->current_tb = tb;
651: /* execute the generated code */
652: gen_func = (void *)tc_ptr;
653: #if defined(__sparc__)
654: __asm__ __volatile__("call %0\n\t"
655: "mov %%o7,%%i0"
656: : /* no outputs */
1.1.1.6 ! root 657: : "r" (gen_func)
1.1.1.4 root 658: : "i0", "i1", "i2", "i3", "i4", "i5",
1.1.1.6 ! root 659: "o0", "o1", "o2", "o3", "o4", "o5",
1.1.1.4 root 660: "l0", "l1", "l2", "l3", "l4", "l5",
661: "l6", "l7");
1.1 root 662: #elif defined(__arm__)
663: asm volatile ("mov pc, %0\n\t"
664: ".global exec_loop\n\t"
665: "exec_loop:\n\t"
666: : /* no outputs */
667: : "r" (gen_func)
668: : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
669: #elif defined(__ia64)
670: struct fptr {
671: void *ip;
672: void *gp;
673: } fp;
674:
675: fp.ip = tc_ptr;
676: fp.gp = code_gen_buffer + 2 * (1 << 20);
677: (*(void (*)(void)) &fp)();
678: #else
679: gen_func();
680: #endif
681: env->current_tb = NULL;
682: /* reset soft MMU for next block (it can currently
683: only be set by a memory fault) */
684: #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
685: if (env->hflags & HF_SOFTMMU_MASK) {
686: env->hflags &= ~HF_SOFTMMU_MASK;
687: /* do not allow linking to another block */
688: T0 = 0;
689: }
690: #endif
1.1.1.3 root 691: #if defined(USE_KQEMU)
692: #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
693: if (kqemu_is_ok(env) &&
694: (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
695: cpu_loop_exit();
696: }
697: #endif
1.1.1.6 ! root 698: } /* for(;;) */
1.1 root 699: } else {
700: env_to_regs();
701: }
702: } /* for(;;) */
703:
704:
705: #if defined(TARGET_I386)
706: /* restore flags in standard format */
707: env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
708: #elif defined(TARGET_ARM)
709: /* XXX: Save/restore host fpu exception state?. */
710: #elif defined(TARGET_SPARC)
711: #if defined(reg_REGWPTR)
712: REGWPTR = saved_regwptr;
713: #endif
714: #elif defined(TARGET_PPC)
1.1.1.5 root 715: #elif defined(TARGET_M68K)
716: cpu_m68k_flush_flags(env, env->cc_op);
717: env->cc_op = CC_OP_FLAGS;
718: env->sr = (env->sr & 0xffe0)
719: | env->cc_dest | (env->cc_x << 4);
1.1 root 720: #elif defined(TARGET_MIPS)
1.1.1.3 root 721: #elif defined(TARGET_SH4)
1.1.1.6 ! root 722: #elif defined(TARGET_ALPHA)
! 723: #elif defined(TARGET_CRIS)
1.1.1.3 root 724: /* XXXXX */
1.1 root 725: #else
726: #error unsupported target CPU
727: #endif
1.1.1.5 root 728:
729: /* restore global registers */
1.1.1.6 ! root 730: RESTORE_GLOBALS();
1.1.1.5 root 731: #include "hostregs_helper.h"
732:
1.1.1.2 root 733: /* fail safe : never use cpu_single_env outside cpu_exec() */
1.1.1.6 ! root 734: cpu_single_env = NULL;
1.1 root 735: return ret;
736: }
737:
738: /* must only be called from the generated code as an exception can be
739: generated */
740: void tb_invalidate_page_range(target_ulong start, target_ulong end)
741: {
742: /* XXX: cannot enable it yet because it yields to MMU exception
743: where NIP != read address on PowerPC */
744: #if 0
745: target_ulong phys_addr;
746: phys_addr = get_phys_addr_code(env, start);
747: tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
748: #endif
749: }
750:
751: #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
752:
753: void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
754: {
755: CPUX86State *saved_env;
756:
757: saved_env = env;
758: env = s;
759: if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
760: selector &= 0xffff;
1.1.1.6 ! root 761: cpu_x86_load_seg_cache(env, seg_reg, selector,
1.1 root 762: (selector << 4), 0xffff, 0);
763: } else {
764: load_seg(seg_reg, selector);
765: }
766: env = saved_env;
767: }
768:
1.1.1.6 ! root 769: void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
1.1 root 770: {
771: CPUX86State *saved_env;
772:
773: saved_env = env;
774: env = s;
1.1.1.6 ! root 775:
! 776: helper_fsave(ptr, data32);
1.1 root 777:
778: env = saved_env;
779: }
780:
1.1.1.6 ! root 781: void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
1.1 root 782: {
783: CPUX86State *saved_env;
784:
785: saved_env = env;
786: env = s;
1.1.1.6 ! root 787:
! 788: helper_frstor(ptr, data32);
1.1 root 789:
790: env = saved_env;
791: }
792:
793: #endif /* TARGET_I386 */
794:
795: #if !defined(CONFIG_SOFTMMU)
796:
797: #if defined(TARGET_I386)
798:
799: /* 'pc' is the host PC at which the exception was raised. 'address' is
800: the effective address of the memory exception. 'is_write' is 1 if a
801: write caused the exception and otherwise 0'. 'old_set' is the
802: signal set which should be restored */
803: static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1.1.1.6 ! root 804: int is_write, sigset_t *old_set,
1.1 root 805: void *puc)
806: {
807: TranslationBlock *tb;
808: int ret;
809:
810: if (cpu_single_env)
811: env = cpu_single_env; /* XXX: find a correct solution for multithread */
812: #if defined(DEBUG_SIGNAL)
1.1.1.6 ! root 813: qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1.1 root 814: pc, address, is_write, *(unsigned long *)old_set);
815: #endif
816: /* XXX: locking issue */
1.1.1.3 root 817: if (is_write && page_unprotect(h2g(address), pc, puc)) {
1.1 root 818: return 1;
819: }
820:
821: /* see if it is an MMU fault */
1.1.1.6 ! root 822: ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1.1 root 823: if (ret < 0)
824: return 0; /* not an MMU fault */
825: if (ret == 0)
826: return 1; /* the MMU fault was handled without causing real CPU fault */
827: /* now we have a real cpu fault */
828: tb = tb_find_pc(pc);
829: if (tb) {
830: /* the PC is inside the translated code. It means that we have
831: a virtual CPU fault */
832: cpu_restore_state(tb, env, pc, puc);
833: }
834: if (ret == 1) {
835: #if 0
1.1.1.6 ! root 836: printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
1.1 root 837: env->eip, env->cr[2], env->error_code);
838: #endif
839: /* we restore the process signal mask as the sigreturn should
840: do it (XXX: use sigsetjmp) */
841: sigprocmask(SIG_SETMASK, old_set, NULL);
1.1.1.2 root 842: raise_exception_err(env->exception_index, env->error_code);
1.1 root 843: } else {
844: /* activate soft MMU for this block */
845: env->hflags |= HF_SOFTMMU_MASK;
846: cpu_resume_from_signal(env, puc);
847: }
848: /* never comes here */
849: return 1;
850: }
851:
852: #elif defined(TARGET_ARM)
853: static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
854: int is_write, sigset_t *old_set,
855: void *puc)
856: {
857: TranslationBlock *tb;
858: int ret;
859:
860: if (cpu_single_env)
861: env = cpu_single_env; /* XXX: find a correct solution for multithread */
862: #if defined(DEBUG_SIGNAL)
1.1.1.6 ! root 863: printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1.1 root 864: pc, address, is_write, *(unsigned long *)old_set);
865: #endif
866: /* XXX: locking issue */
1.1.1.3 root 867: if (is_write && page_unprotect(h2g(address), pc, puc)) {
1.1 root 868: return 1;
869: }
870: /* see if it is an MMU fault */
1.1.1.6 ! root 871: ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1.1 root 872: if (ret < 0)
873: return 0; /* not an MMU fault */
874: if (ret == 0)
875: return 1; /* the MMU fault was handled without causing real CPU fault */
876: /* now we have a real cpu fault */
877: tb = tb_find_pc(pc);
878: if (tb) {
879: /* the PC is inside the translated code. It means that we have
880: a virtual CPU fault */
881: cpu_restore_state(tb, env, pc, puc);
882: }
883: /* we restore the process signal mask as the sigreturn should
884: do it (XXX: use sigsetjmp) */
885: sigprocmask(SIG_SETMASK, old_set, NULL);
886: cpu_loop_exit();
887: }
888: #elif defined(TARGET_SPARC)
889: static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
890: int is_write, sigset_t *old_set,
891: void *puc)
892: {
893: TranslationBlock *tb;
894: int ret;
895:
896: if (cpu_single_env)
897: env = cpu_single_env; /* XXX: find a correct solution for multithread */
898: #if defined(DEBUG_SIGNAL)
1.1.1.6 ! root 899: printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1.1 root 900: pc, address, is_write, *(unsigned long *)old_set);
901: #endif
902: /* XXX: locking issue */
1.1.1.3 root 903: if (is_write && page_unprotect(h2g(address), pc, puc)) {
1.1 root 904: return 1;
905: }
906: /* see if it is an MMU fault */
1.1.1.6 ! root 907: ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1.1 root 908: if (ret < 0)
909: return 0; /* not an MMU fault */
910: if (ret == 0)
911: return 1; /* the MMU fault was handled without causing real CPU fault */
912: /* now we have a real cpu fault */
913: tb = tb_find_pc(pc);
914: if (tb) {
915: /* the PC is inside the translated code. It means that we have
916: a virtual CPU fault */
917: cpu_restore_state(tb, env, pc, puc);
918: }
919: /* we restore the process signal mask as the sigreturn should
920: do it (XXX: use sigsetjmp) */
921: sigprocmask(SIG_SETMASK, old_set, NULL);
922: cpu_loop_exit();
923: }
924: #elif defined (TARGET_PPC)
925: static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
926: int is_write, sigset_t *old_set,
927: void *puc)
928: {
929: TranslationBlock *tb;
930: int ret;
1.1.1.6 ! root 931:
1.1 root 932: if (cpu_single_env)
933: env = cpu_single_env; /* XXX: find a correct solution for multithread */
934: #if defined(DEBUG_SIGNAL)
1.1.1.6 ! root 935: printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1.1 root 936: pc, address, is_write, *(unsigned long *)old_set);
937: #endif
938: /* XXX: locking issue */
1.1.1.3 root 939: if (is_write && page_unprotect(h2g(address), pc, puc)) {
1.1 root 940: return 1;
941: }
942:
943: /* see if it is an MMU fault */
1.1.1.6 ! root 944: ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1.1 root 945: if (ret < 0)
946: return 0; /* not an MMU fault */
947: if (ret == 0)
948: return 1; /* the MMU fault was handled without causing real CPU fault */
949:
950: /* now we have a real cpu fault */
951: tb = tb_find_pc(pc);
952: if (tb) {
953: /* the PC is inside the translated code. It means that we have
954: a virtual CPU fault */
955: cpu_restore_state(tb, env, pc, puc);
956: }
957: if (ret == 1) {
958: #if 0
1.1.1.6 ! root 959: printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1.1 root 960: env->nip, env->error_code, tb);
961: #endif
962: /* we restore the process signal mask as the sigreturn should
963: do it (XXX: use sigsetjmp) */
964: sigprocmask(SIG_SETMASK, old_set, NULL);
965: do_raise_exception_err(env->exception_index, env->error_code);
966: } else {
967: /* activate soft MMU for this block */
968: cpu_resume_from_signal(env, puc);
969: }
970: /* never comes here */
971: return 1;
972: }
973:
1.1.1.5 root 974: #elif defined(TARGET_M68K)
975: static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
976: int is_write, sigset_t *old_set,
977: void *puc)
978: {
979: TranslationBlock *tb;
980: int ret;
981:
982: if (cpu_single_env)
983: env = cpu_single_env; /* XXX: find a correct solution for multithread */
984: #if defined(DEBUG_SIGNAL)
1.1.1.6 ! root 985: printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1.1.1.5 root 986: pc, address, is_write, *(unsigned long *)old_set);
987: #endif
988: /* XXX: locking issue */
989: if (is_write && page_unprotect(address, pc, puc)) {
990: return 1;
991: }
992: /* see if it is an MMU fault */
1.1.1.6 ! root 993: ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1.1.1.5 root 994: if (ret < 0)
995: return 0; /* not an MMU fault */
996: if (ret == 0)
997: return 1; /* the MMU fault was handled without causing real CPU fault */
998: /* now we have a real cpu fault */
999: tb = tb_find_pc(pc);
1000: if (tb) {
1001: /* the PC is inside the translated code. It means that we have
1002: a virtual CPU fault */
1003: cpu_restore_state(tb, env, pc, puc);
1004: }
1005: /* we restore the process signal mask as the sigreturn should
1006: do it (XXX: use sigsetjmp) */
1007: sigprocmask(SIG_SETMASK, old_set, NULL);
1008: cpu_loop_exit();
1009: /* never comes here */
1010: return 1;
1011: }
1012:
1.1 root 1013: #elif defined (TARGET_MIPS)
1014: static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1015: int is_write, sigset_t *old_set,
1016: void *puc)
1017: {
1018: TranslationBlock *tb;
1019: int ret;
1.1.1.6 ! root 1020:
1.1 root 1021: if (cpu_single_env)
1022: env = cpu_single_env; /* XXX: find a correct solution for multithread */
1023: #if defined(DEBUG_SIGNAL)
1.1.1.6 ! root 1024: printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1.1 root 1025: pc, address, is_write, *(unsigned long *)old_set);
1026: #endif
1027: /* XXX: locking issue */
1.1.1.3 root 1028: if (is_write && page_unprotect(h2g(address), pc, puc)) {
1.1 root 1029: return 1;
1030: }
1031:
1032: /* see if it is an MMU fault */
1.1.1.6 ! root 1033: ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1.1 root 1034: if (ret < 0)
1035: return 0; /* not an MMU fault */
1036: if (ret == 0)
1037: return 1; /* the MMU fault was handled without causing real CPU fault */
1038:
1039: /* now we have a real cpu fault */
1040: tb = tb_find_pc(pc);
1041: if (tb) {
1042: /* the PC is inside the translated code. It means that we have
1043: a virtual CPU fault */
1044: cpu_restore_state(tb, env, pc, puc);
1045: }
1046: if (ret == 1) {
1047: #if 0
1.1.1.6 ! root 1048: printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
! 1049: env->PC, env->error_code, tb);
1.1 root 1050: #endif
1051: /* we restore the process signal mask as the sigreturn should
1052: do it (XXX: use sigsetjmp) */
1053: sigprocmask(SIG_SETMASK, old_set, NULL);
1054: do_raise_exception_err(env->exception_index, env->error_code);
1055: } else {
1056: /* activate soft MMU for this block */
1057: cpu_resume_from_signal(env, puc);
1058: }
1059: /* never comes here */
1060: return 1;
1061: }
1062:
1.1.1.3 root 1063: #elif defined (TARGET_SH4)
1064: static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1065: int is_write, sigset_t *old_set,
1066: void *puc)
1067: {
1068: TranslationBlock *tb;
1069: int ret;
1.1.1.6 ! root 1070:
1.1.1.3 root 1071: if (cpu_single_env)
1072: env = cpu_single_env; /* XXX: find a correct solution for multithread */
1073: #if defined(DEBUG_SIGNAL)
1.1.1.6 ! root 1074: printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1.1.1.3 root 1075: pc, address, is_write, *(unsigned long *)old_set);
1076: #endif
1077: /* XXX: locking issue */
1078: if (is_write && page_unprotect(h2g(address), pc, puc)) {
1079: return 1;
1080: }
1081:
1082: /* see if it is an MMU fault */
1.1.1.6 ! root 1083: ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1.1.1.3 root 1084: if (ret < 0)
1085: return 0; /* not an MMU fault */
1086: if (ret == 0)
1087: return 1; /* the MMU fault was handled without causing real CPU fault */
1088:
1089: /* now we have a real cpu fault */
1090: tb = tb_find_pc(pc);
1091: if (tb) {
1092: /* the PC is inside the translated code. It means that we have
1093: a virtual CPU fault */
1094: cpu_restore_state(tb, env, pc, puc);
1095: }
1096: #if 0
1.1.1.6 ! root 1097: printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1.1.1.3 root 1098: env->nip, env->error_code, tb);
1099: #endif
1100: /* we restore the process signal mask as the sigreturn should
1101: do it (XXX: use sigsetjmp) */
1.1.1.4 root 1102: sigprocmask(SIG_SETMASK, old_set, NULL);
1103: cpu_loop_exit();
1.1.1.3 root 1104: /* never comes here */
1105: return 1;
1106: }
1.1 root 1107:
1.1.1.6 ! root 1108: #elif defined (TARGET_ALPHA)
! 1109: static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
! 1110: int is_write, sigset_t *old_set,
! 1111: void *puc)
! 1112: {
! 1113: TranslationBlock *tb;
! 1114: int ret;
1.1.1.5 root 1115:
1.1.1.6 ! root 1116: if (cpu_single_env)
! 1117: env = cpu_single_env; /* XXX: find a correct solution for multithread */
! 1118: #if defined(DEBUG_SIGNAL)
! 1119: printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
! 1120: pc, address, is_write, *(unsigned long *)old_set);
1.1.1.5 root 1121: #endif
1.1.1.6 ! root 1122: /* XXX: locking issue */
! 1123: if (is_write && page_unprotect(h2g(address), pc, puc)) {
! 1124: return 1;
! 1125: }
1.1.1.5 root 1126:
1.1.1.6 ! root 1127: /* see if it is an MMU fault */
! 1128: ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
! 1129: if (ret < 0)
! 1130: return 0; /* not an MMU fault */
! 1131: if (ret == 0)
! 1132: return 1; /* the MMU fault was handled without causing real CPU fault */
! 1133:
! 1134: /* now we have a real cpu fault */
! 1135: tb = tb_find_pc(pc);
! 1136: if (tb) {
! 1137: /* the PC is inside the translated code. It means that we have
! 1138: a virtual CPU fault */
! 1139: cpu_restore_state(tb, env, pc, puc);
! 1140: }
! 1141: #if 0
! 1142: printf("PF exception: NIP=0x%08x error=0x%x %p\n",
! 1143: env->nip, env->error_code, tb);
! 1144: #endif
! 1145: /* we restore the process signal mask as the sigreturn should
! 1146: do it (XXX: use sigsetjmp) */
! 1147: sigprocmask(SIG_SETMASK, old_set, NULL);
! 1148: cpu_loop_exit();
! 1149: /* never comes here */
! 1150: return 1;
! 1151: }
! 1152: #elif defined (TARGET_CRIS)
! 1153: static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
! 1154: int is_write, sigset_t *old_set,
! 1155: void *puc)
1.1 root 1156: {
1157: TranslationBlock *tb;
1.1.1.6 ! root 1158: int ret;
1.1 root 1159:
1160: if (cpu_single_env)
1161: env = cpu_single_env; /* XXX: find a correct solution for multithread */
1.1.1.6 ! root 1162: #if defined(DEBUG_SIGNAL)
! 1163: printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
! 1164: pc, address, is_write, *(unsigned long *)old_set);
! 1165: #endif
! 1166: /* XXX: locking issue */
! 1167: if (is_write && page_unprotect(h2g(address), pc, puc)) {
! 1168: return 1;
! 1169: }
! 1170:
! 1171: /* see if it is an MMU fault */
! 1172: ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
! 1173: if (ret < 0)
! 1174: return 0; /* not an MMU fault */
! 1175: if (ret == 0)
! 1176: return 1; /* the MMU fault was handled without causing real CPU fault */
! 1177:
1.1 root 1178: /* now we have a real cpu fault */
1179: tb = tb_find_pc(pc);
1180: if (tb) {
1181: /* the PC is inside the translated code. It means that we have
1182: a virtual CPU fault */
1.1.1.6 ! root 1183: cpu_restore_state(tb, env, pc, puc);
1.1 root 1184: }
1.1.1.6 ! root 1185: #if 0
! 1186: printf("PF exception: NIP=0x%08x error=0x%x %p\n",
! 1187: env->nip, env->error_code, tb);
! 1188: #endif
! 1189: /* we restore the process signal mask as the sigreturn should
! 1190: do it (XXX: use sigsetjmp) */
! 1191: sigprocmask(SIG_SETMASK, old_set, NULL);
! 1192: cpu_loop_exit();
! 1193: /* never comes here */
! 1194: return 1;
1.1 root 1195: }
1.1.1.6 ! root 1196:
! 1197: #else
! 1198: #error unsupported target CPU
1.1 root 1199: #endif
1200:
1.1.1.6 ! root 1201: #if defined(__i386__)
! 1202:
! 1203: #if defined(__APPLE__)
! 1204: # include <sys/ucontext.h>
! 1205:
! 1206: # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
! 1207: # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
! 1208: # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
! 1209: #else
! 1210: # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
! 1211: # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
! 1212: # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
! 1213: #endif
! 1214:
! 1215: int cpu_signal_handler(int host_signum, void *pinfo,
1.1 root 1216: void *puc)
1217: {
1.1.1.5 root 1218: siginfo_t *info = pinfo;
1.1 root 1219: struct ucontext *uc = puc;
1220: unsigned long pc;
1221: int trapno;
1222:
1223: #ifndef REG_EIP
1224: /* for glibc 2.1 */
1225: #define REG_EIP EIP
1226: #define REG_ERR ERR
1227: #define REG_TRAPNO TRAPNO
1228: #endif
1.1.1.5 root 1229: pc = EIP_sig(uc);
1230: trapno = TRAP_sig(uc);
1.1.1.6 ! root 1231: return handle_cpu_signal(pc, (unsigned long)info->si_addr,
! 1232: trapno == 0xe ?
! 1233: (ERROR_sig(uc) >> 1) & 1 : 0,
! 1234: &uc->uc_sigmask, puc);
1.1 root 1235: }
1236:
1237: #elif defined(__x86_64__)
1238:
1.1.1.5 root 1239: int cpu_signal_handler(int host_signum, void *pinfo,
1.1 root 1240: void *puc)
1241: {
1.1.1.5 root 1242: siginfo_t *info = pinfo;
1.1 root 1243: struct ucontext *uc = puc;
1244: unsigned long pc;
1245:
1246: pc = uc->uc_mcontext.gregs[REG_RIP];
1.1.1.6 ! root 1247: return handle_cpu_signal(pc, (unsigned long)info->si_addr,
! 1248: uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1.1 root 1249: (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1250: &uc->uc_sigmask, puc);
1251: }
1252:
1253: #elif defined(__powerpc__)
1254:
1255: /***********************************************************************
1256: * signal context platform-specific definitions
1257: * From Wine
1258: */
1259: #ifdef linux
1260: /* All Registers access - only for local access */
1261: # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1262: /* Gpr Registers access */
1263: # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1264: # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1265: # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1266: # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1267: # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1268: # define LR_sig(context) REG_sig(link, context) /* Link register */
1269: # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1270: /* Float Registers access */
1271: # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1272: # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1273: /* Exception Registers access */
1274: # define DAR_sig(context) REG_sig(dar, context)
1275: # define DSISR_sig(context) REG_sig(dsisr, context)
1276: # define TRAP_sig(context) REG_sig(trap, context)
1277: #endif /* linux */
1278:
1279: #ifdef __APPLE__
1280: # include <sys/ucontext.h>
1281: typedef struct ucontext SIGCONTEXT;
1282: /* All Registers access - only for local access */
1283: # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1284: # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1285: # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1286: # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1287: /* Gpr Registers access */
1288: # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1289: # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1290: # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1291: # define CTR_sig(context) REG_sig(ctr, context)
1292: # define XER_sig(context) REG_sig(xer, context) /* Link register */
1293: # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1294: # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1295: /* Float Registers access */
1296: # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1297: # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1298: /* Exception Registers access */
1299: # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1300: # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1301: # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1302: #endif /* __APPLE__ */
1303:
1.1.1.6 ! root 1304: int cpu_signal_handler(int host_signum, void *pinfo,
1.1 root 1305: void *puc)
1306: {
1.1.1.5 root 1307: siginfo_t *info = pinfo;
1.1 root 1308: struct ucontext *uc = puc;
1309: unsigned long pc;
1310: int is_write;
1311:
1312: pc = IAR_sig(uc);
1313: is_write = 0;
1314: #if 0
1315: /* ppc 4xx case */
1316: if (DSISR_sig(uc) & 0x00800000)
1317: is_write = 1;
1318: #else
1319: if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1320: is_write = 1;
1321: #endif
1.1.1.6 ! root 1322: return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1.1 root 1323: is_write, &uc->uc_sigmask, puc);
1324: }
1325:
1326: #elif defined(__alpha__)
1327:
1.1.1.6 ! root 1328: int cpu_signal_handler(int host_signum, void *pinfo,
1.1 root 1329: void *puc)
1330: {
1.1.1.5 root 1331: siginfo_t *info = pinfo;
1.1 root 1332: struct ucontext *uc = puc;
1333: uint32_t *pc = uc->uc_mcontext.sc_pc;
1334: uint32_t insn = *pc;
1335: int is_write = 0;
1336:
1337: /* XXX: need kernel patch to get write flag faster */
1338: switch (insn >> 26) {
1339: case 0x0d: // stw
1340: case 0x0e: // stb
1341: case 0x0f: // stq_u
1342: case 0x24: // stf
1343: case 0x25: // stg
1344: case 0x26: // sts
1345: case 0x27: // stt
1346: case 0x2c: // stl
1347: case 0x2d: // stq
1348: case 0x2e: // stl_c
1349: case 0x2f: // stq_c
1350: is_write = 1;
1351: }
1352:
1.1.1.6 ! root 1353: return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1.1 root 1354: is_write, &uc->uc_sigmask, puc);
1355: }
1356: #elif defined(__sparc__)
1357:
1.1.1.6 ! root 1358: int cpu_signal_handler(int host_signum, void *pinfo,
1.1 root 1359: void *puc)
1360: {
1.1.1.5 root 1361: siginfo_t *info = pinfo;
1.1 root 1362: uint32_t *regs = (uint32_t *)(info + 1);
1363: void *sigmask = (regs + 20);
1364: unsigned long pc;
1365: int is_write;
1366: uint32_t insn;
1.1.1.6 ! root 1367:
1.1 root 1368: /* XXX: is there a standard glibc define ? */
1369: pc = regs[1];
1370: /* XXX: need kernel patch to get write flag faster */
1371: is_write = 0;
1372: insn = *(uint32_t *)pc;
1373: if ((insn >> 30) == 3) {
1374: switch((insn >> 19) & 0x3f) {
1375: case 0x05: // stb
1376: case 0x06: // sth
1377: case 0x04: // st
1378: case 0x07: // std
1379: case 0x24: // stf
1380: case 0x27: // stdf
1381: case 0x25: // stfsr
1382: is_write = 1;
1383: break;
1384: }
1385: }
1.1.1.6 ! root 1386: return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1.1 root 1387: is_write, sigmask, NULL);
1388: }
1389:
1390: #elif defined(__arm__)
1391:
1.1.1.6 ! root 1392: int cpu_signal_handler(int host_signum, void *pinfo,
1.1 root 1393: void *puc)
1394: {
1.1.1.5 root 1395: siginfo_t *info = pinfo;
1.1 root 1396: struct ucontext *uc = puc;
1397: unsigned long pc;
1398: int is_write;
1.1.1.6 ! root 1399:
1.1 root 1400: pc = uc->uc_mcontext.gregs[R15];
1401: /* XXX: compute is_write */
1402: is_write = 0;
1.1.1.6 ! root 1403: return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1.1 root 1404: is_write,
1.1.1.5 root 1405: &uc->uc_sigmask, puc);
1.1 root 1406: }
1407:
1408: #elif defined(__mc68000)
1409:
1.1.1.6 ! root 1410: int cpu_signal_handler(int host_signum, void *pinfo,
1.1 root 1411: void *puc)
1412: {
1.1.1.5 root 1413: siginfo_t *info = pinfo;
1.1 root 1414: struct ucontext *uc = puc;
1415: unsigned long pc;
1416: int is_write;
1.1.1.6 ! root 1417:
1.1 root 1418: pc = uc->uc_mcontext.gregs[16];
1419: /* XXX: compute is_write */
1420: is_write = 0;
1.1.1.6 ! root 1421: return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1.1 root 1422: is_write,
1423: &uc->uc_sigmask, puc);
1424: }
1425:
1426: #elif defined(__ia64)
1427:
1428: #ifndef __ISR_VALID
1429: /* This ought to be in <bits/siginfo.h>... */
1430: # define __ISR_VALID 1
1431: #endif
1432:
1.1.1.5 root 1433: int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1.1 root 1434: {
1.1.1.5 root 1435: siginfo_t *info = pinfo;
1.1 root 1436: struct ucontext *uc = puc;
1437: unsigned long ip;
1438: int is_write = 0;
1439:
1440: ip = uc->uc_mcontext.sc_ip;
1441: switch (host_signum) {
1442: case SIGILL:
1443: case SIGFPE:
1444: case SIGSEGV:
1445: case SIGBUS:
1446: case SIGTRAP:
1.1.1.3 root 1447: if (info->si_code && (info->si_segvflags & __ISR_VALID))
1.1 root 1448: /* ISR.W (write-access) is bit 33: */
1449: is_write = (info->si_isr >> 33) & 1;
1450: break;
1451:
1452: default:
1453: break;
1454: }
1455: return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1456: is_write,
1457: &uc->uc_sigmask, puc);
1458: }
1459:
1460: #elif defined(__s390__)
1461:
1.1.1.6 ! root 1462: int cpu_signal_handler(int host_signum, void *pinfo,
1.1 root 1463: void *puc)
1464: {
1.1.1.5 root 1465: siginfo_t *info = pinfo;
1.1 root 1466: struct ucontext *uc = puc;
1467: unsigned long pc;
1468: int is_write;
1.1.1.6 ! root 1469:
1.1 root 1470: pc = uc->uc_mcontext.psw.addr;
1471: /* XXX: compute is_write */
1472: is_write = 0;
1.1.1.6 ! root 1473: return handle_cpu_signal(pc, (unsigned long)info->si_addr,
! 1474: is_write, &uc->uc_sigmask, puc);
! 1475: }
! 1476:
! 1477: #elif defined(__mips__)
! 1478:
! 1479: int cpu_signal_handler(int host_signum, void *pinfo,
! 1480: void *puc)
! 1481: {
! 1482: siginfo_t *info = pinfo;
! 1483: struct ucontext *uc = puc;
! 1484: greg_t pc = uc->uc_mcontext.pc;
! 1485: int is_write;
! 1486:
! 1487: /* XXX: compute is_write */
! 1488: is_write = 0;
! 1489: return handle_cpu_signal(pc, (unsigned long)info->si_addr,
! 1490: is_write, &uc->uc_sigmask, puc);
1.1 root 1491: }
1492:
1493: #else
1494:
1495: #error host CPU specific signal handler needed
1496:
1497: #endif
1498:
1499: #endif /* !defined(CONFIG_SOFTMMU) */
unix.superglobalmegacorp.com