Annotation of qemu/exec.c, revision 1.1.1.10
1.1 root 1: /*
2: * virtual page mapping and translated block handling
1.1.1.6 root 3: *
1.1 root 4: * Copyright (c) 2003 Fabrice Bellard
5: *
6: * This library is free software; you can redistribute it and/or
7: * modify it under the terms of the GNU Lesser General Public
8: * License as published by the Free Software Foundation; either
9: * version 2 of the License, or (at your option) any later version.
10: *
11: * This library is distributed in the hope that it will be useful,
12: * but WITHOUT ANY WARRANTY; without even the implied warranty of
13: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14: * Lesser General Public License for more details.
15: *
16: * You should have received a copy of the GNU Lesser General Public
1.1.1.10! root 17: * License along with this library; if not, see <http://www.gnu.org/licenses/>.
1.1 root 18: */
19: #include "config.h"
20: #ifdef _WIN32
21: #include <windows.h>
22: #else
23: #include <sys/types.h>
24: #include <sys/mman.h>
25: #endif
26: #include <stdlib.h>
27: #include <stdio.h>
28: #include <stdarg.h>
29: #include <string.h>
30: #include <errno.h>
31: #include <unistd.h>
32: #include <inttypes.h>
33:
34: #include "cpu.h"
35: #include "exec-all.h"
1.1.1.7 root 36: #include "qemu-common.h"
37: #include "tcg.h"
38: #include "hw/hw.h"
39: #include "osdep.h"
40: #include "kvm.h"
1.1.1.3 root 41: #if defined(CONFIG_USER_ONLY)
42: #include <qemu.h>
43: #endif
1.1 root 44:
45: //#define DEBUG_TB_INVALIDATE
46: //#define DEBUG_FLUSH
47: //#define DEBUG_TLB
1.1.1.5 root 48: //#define DEBUG_UNASSIGNED
1.1 root 49:
50: /* make various TB consistency checks */
1.1.1.6 root 51: //#define DEBUG_TB_CHECK
52: //#define DEBUG_TLB_CHECK
53:
54: //#define DEBUG_IOPORT
55: //#define DEBUG_SUBPAGE
1.1 root 56:
1.1.1.3 root 57: #if !defined(CONFIG_USER_ONLY)
58: /* TB consistency checks only implemented for usermode emulation. */
59: #undef DEBUG_TB_CHECK
60: #endif
61:
1.1 root 62: #define SMC_BITMAP_USE_THRESHOLD 10
63:
64: #if defined(TARGET_SPARC64)
65: #define TARGET_PHYS_ADDR_SPACE_BITS 41
1.1.1.6 root 66: #elif defined(TARGET_SPARC)
67: #define TARGET_PHYS_ADDR_SPACE_BITS 36
68: #elif defined(TARGET_ALPHA)
69: #define TARGET_PHYS_ADDR_SPACE_BITS 42
70: #define TARGET_VIRT_ADDR_SPACE_BITS 42
1.1 root 71: #elif defined(TARGET_PPC64)
72: #define TARGET_PHYS_ADDR_SPACE_BITS 42
1.1.1.10! root 73: #elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
1.1.1.7 root 74: #define TARGET_PHYS_ADDR_SPACE_BITS 42
1.1.1.10! root 75: #elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
1.1.1.7 root 76: #define TARGET_PHYS_ADDR_SPACE_BITS 36
1.1 root 77: #else
78: /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
79: #define TARGET_PHYS_ADDR_SPACE_BITS 32
80: #endif
81:
1.1.1.7 root 82: static TranslationBlock *tbs;
83: int code_gen_max_blocks;
1.1 root 84: TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
1.1.1.7 root 85: static int nb_tbs;
1.1 root 86: /* any access to the tbs or the page table must use this lock */
87: spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88:
1.1.1.7 root 89: #if defined(__arm__) || defined(__sparc_v9__)
90: /* The prologue must be reachable with a direct jump. ARM and Sparc64
91: have limited branch ranges (possibly also PPC) so place it in a
92: section close to code segment. */
93: #define code_gen_section \
94: __attribute__((__section__(".gen_code"))) \
95: __attribute__((aligned (32)))
1.1.1.10! root 96: #elif defined(_WIN32)
! 97: /* Maximum alignment for Win32 is 16. */
! 98: #define code_gen_section \
! 99: __attribute__((aligned (16)))
1.1.1.7 root 100: #else
101: #define code_gen_section \
102: __attribute__((aligned (32)))
103: #endif
104:
105: uint8_t code_gen_prologue[1024] code_gen_section;
106: static uint8_t *code_gen_buffer;
107: static unsigned long code_gen_buffer_size;
108: /* threshold to flush the translated code buffer */
109: static unsigned long code_gen_buffer_max_size;
1.1 root 110: uint8_t *code_gen_ptr;
111:
1.1.1.7 root 112: #if !defined(CONFIG_USER_ONLY)
1.1 root 113: int phys_ram_fd;
114: uint8_t *phys_ram_dirty;
1.1.1.7 root 115: static int in_migration;
1.1.1.10! root 116:
! 117: typedef struct RAMBlock {
! 118: uint8_t *host;
! 119: ram_addr_t offset;
! 120: ram_addr_t length;
! 121: struct RAMBlock *next;
! 122: } RAMBlock;
! 123:
! 124: static RAMBlock *ram_blocks;
! 125: /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
! 126: then we can no longer assume contiguous ram offsets, and external uses
! 127: of this variable will break. */
! 128: ram_addr_t last_ram_offset;
1.1.1.7 root 129: #endif
1.1 root 130:
1.1.1.2 root 131: CPUState *first_cpu;
132: /* current CPU in the current thread. It is only valid inside
133: cpu_exec() */
1.1.1.6 root 134: CPUState *cpu_single_env;
1.1.1.7 root 135: /* 0 = Do not count executed instructions.
136: 1 = Precise instruction counting.
137: 2 = Adaptive rate instruction counting. */
138: int use_icount = 0;
139: /* Current instruction counter. While executing translated code this may
140: include some instructions that have not yet been executed. */
141: int64_t qemu_icount;
1.1.1.2 root 142:
1.1 root 143: typedef struct PageDesc {
144: /* list of TBs intersecting this ram page */
145: TranslationBlock *first_tb;
146: /* in order to optimize self modifying code, we count the number
147: of lookups we do to a given page to use a bitmap */
148: unsigned int code_write_count;
149: uint8_t *code_bitmap;
150: #if defined(CONFIG_USER_ONLY)
151: unsigned long flags;
152: #endif
153: } PageDesc;
154:
155: typedef struct PhysPageDesc {
1.1.1.7 root 156: /* offset in host memory of the page + io_index in the low bits */
157: ram_addr_t phys_offset;
158: ram_addr_t region_offset;
1.1 root 159: } PhysPageDesc;
160:
161: #define L2_BITS 10
1.1.1.6 root 162: #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163: /* XXX: this is a temporary hack for alpha target.
164: * In the future, this is to be replaced by a multi-level table
165: * to actually be able to handle the complete 64 bits address space.
166: */
167: #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168: #else
1.1 root 169: #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
1.1.1.6 root 170: #endif
1.1 root 171:
172: #define L1_SIZE (1 << L1_BITS)
173: #define L2_SIZE (1 << L2_BITS)
174:
175: unsigned long qemu_real_host_page_size;
176: unsigned long qemu_host_page_bits;
177: unsigned long qemu_host_page_size;
178: unsigned long qemu_host_page_mask;
179:
180: /* XXX: for system emulation, it could just be an array */
181: static PageDesc *l1_map[L1_SIZE];
1.1.1.7 root 182: static PhysPageDesc **l1_phys_map;
183:
184: #if !defined(CONFIG_USER_ONLY)
185: static void io_mem_init(void);
1.1 root 186:
187: /* io memory support */
188: CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189: CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
190: void *io_mem_opaque[IO_MEM_NB_ENTRIES];
1.1.1.10! root 191: static char io_mem_used[IO_MEM_NB_ENTRIES];
1.1.1.6 root 192: static int io_mem_watch;
193: #endif
1.1 root 194:
195: /* log support */
1.1.1.7 root 196: static const char *logfilename = "/tmp/qemu.log";
1.1 root 197: FILE *logfile;
198: int loglevel;
1.1.1.6 root 199: static int log_append = 0;
1.1 root 200:
201: /* statistics */
202: static int tlb_flush_count;
203: static int tb_flush_count;
204: static int tb_phys_invalidate_count;
205:
1.1.1.6 root 206: #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
207: typedef struct subpage_t {
208: target_phys_addr_t base;
209: CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
210: CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
211: void *opaque[TARGET_PAGE_SIZE][2][4];
1.1.1.7 root 212: ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
1.1.1.6 root 213: } subpage_t;
214:
1.1.1.7 root 215: #ifdef _WIN32
216: static void map_exec(void *addr, long size)
217: {
218: DWORD old_protect;
219: VirtualProtect(addr, size,
220: PAGE_EXECUTE_READWRITE, &old_protect);
221:
222: }
223: #else
224: static void map_exec(void *addr, long size)
225: {
226: unsigned long start, end, page_size;
227:
228: page_size = getpagesize();
229: start = (unsigned long)addr;
230: start &= ~(page_size - 1);
231:
232: end = (unsigned long)addr + size;
233: end += page_size - 1;
234: end &= ~(page_size - 1);
235:
236: mprotect((void *)start, end - start,
237: PROT_READ | PROT_WRITE | PROT_EXEC);
238: }
239: #endif
240:
1.1 root 241: static void page_init(void)
242: {
243: /* NOTE: we can always suppose that qemu_host_page_size >=
244: TARGET_PAGE_SIZE */
245: #ifdef _WIN32
246: {
247: SYSTEM_INFO system_info;
1.1.1.6 root 248:
1.1 root 249: GetSystemInfo(&system_info);
250: qemu_real_host_page_size = system_info.dwPageSize;
251: }
252: #else
253: qemu_real_host_page_size = getpagesize();
254: #endif
255: if (qemu_host_page_size == 0)
256: qemu_host_page_size = qemu_real_host_page_size;
257: if (qemu_host_page_size < TARGET_PAGE_SIZE)
258: qemu_host_page_size = TARGET_PAGE_SIZE;
259: qemu_host_page_bits = 0;
260: while ((1 << qemu_host_page_bits) < qemu_host_page_size)
261: qemu_host_page_bits++;
262: qemu_host_page_mask = ~(qemu_host_page_size - 1);
263: l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
264: memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
1.1.1.6 root 265:
266: #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
267: {
268: long long startaddr, endaddr;
269: FILE *f;
270: int n;
271:
1.1.1.7 root 272: mmap_lock();
273: last_brk = (unsigned long)sbrk(0);
1.1.1.6 root 274: f = fopen("/proc/self/maps", "r");
275: if (f) {
276: do {
277: n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
278: if (n == 2) {
1.1.1.7 root 279: startaddr = MIN(startaddr,
280: (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
281: endaddr = MIN(endaddr,
282: (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
283: page_set_flags(startaddr & TARGET_PAGE_MASK,
1.1.1.6 root 284: TARGET_PAGE_ALIGN(endaddr),
285: PAGE_RESERVED);
286: }
287: } while (!feof(f));
288: fclose(f);
289: }
1.1.1.7 root 290: mmap_unlock();
1.1.1.6 root 291: }
292: #endif
1.1 root 293: }
294:
1.1.1.7 root 295: static inline PageDesc **page_l1_map(target_ulong index)
296: {
297: #if TARGET_LONG_BITS > 32
298: /* Host memory outside guest VM. For 32-bit targets we have already
299: excluded high addresses. */
300: if (index > ((target_ulong)L2_SIZE * L1_SIZE))
301: return NULL;
302: #endif
303: return &l1_map[index >> L2_BITS];
304: }
305:
306: static inline PageDesc *page_find_alloc(target_ulong index)
1.1 root 307: {
308: PageDesc **lp, *p;
1.1.1.7 root 309: lp = page_l1_map(index);
310: if (!lp)
311: return NULL;
1.1 root 312:
313: p = *lp;
314: if (!p) {
315: /* allocate if not found */
1.1.1.7 root 316: #if defined(CONFIG_USER_ONLY)
317: size_t len = sizeof(PageDesc) * L2_SIZE;
318: /* Don't use qemu_malloc because it may recurse. */
1.1.1.10! root 319: p = mmap(NULL, len, PROT_READ | PROT_WRITE,
1.1.1.7 root 320: MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1.1 root 321: *lp = p;
1.1.1.7 root 322: if (h2g_valid(p)) {
323: unsigned long addr = h2g(p);
324: page_set_flags(addr & TARGET_PAGE_MASK,
325: TARGET_PAGE_ALIGN(addr + len),
326: PAGE_RESERVED);
327: }
328: #else
329: p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
330: *lp = p;
331: #endif
1.1 root 332: }
333: return p + (index & (L2_SIZE - 1));
334: }
335:
1.1.1.7 root 336: static inline PageDesc *page_find(target_ulong index)
1.1 root 337: {
1.1.1.7 root 338: PageDesc **lp, *p;
339: lp = page_l1_map(index);
340: if (!lp)
341: return NULL;
1.1 root 342:
1.1.1.7 root 343: p = *lp;
1.1.1.10! root 344: if (!p) {
! 345: return NULL;
! 346: }
1.1 root 347: return p + (index & (L2_SIZE - 1));
348: }
349:
350: static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
351: {
352: void **lp, **p;
1.1.1.3 root 353: PhysPageDesc *pd;
1.1 root 354:
355: p = (void **)l1_phys_map;
356: #if TARGET_PHYS_ADDR_SPACE_BITS > 32
357:
358: #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
359: #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
360: #endif
361: lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
362: p = *lp;
363: if (!p) {
364: /* allocate if not found */
365: if (!alloc)
366: return NULL;
367: p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
368: memset(p, 0, sizeof(void *) * L1_SIZE);
369: *lp = p;
370: }
371: #endif
372: lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
1.1.1.3 root 373: pd = *lp;
374: if (!pd) {
375: int i;
1.1 root 376: /* allocate if not found */
377: if (!alloc)
378: return NULL;
1.1.1.3 root 379: pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
380: *lp = pd;
1.1.1.7 root 381: for (i = 0; i < L2_SIZE; i++) {
1.1.1.3 root 382: pd[i].phys_offset = IO_MEM_UNASSIGNED;
1.1.1.7 root 383: pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
384: }
1.1 root 385: }
1.1.1.3 root 386: return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
1.1 root 387: }
388:
389: static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
390: {
391: return phys_page_find_alloc(index, 0);
392: }
393:
394: #if !defined(CONFIG_USER_ONLY)
1.1.1.2 root 395: static void tlb_protect_code(ram_addr_t ram_addr);
1.1.1.6 root 396: static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1.1 root 397: target_ulong vaddr);
1.1.1.7 root 398: #define mmap_lock() do { } while(0)
399: #define mmap_unlock() do { } while(0)
400: #endif
401:
402: #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
403:
404: #if defined(CONFIG_USER_ONLY)
1.1.1.10! root 405: /* Currently it is not recommended to allocate big chunks of data in
1.1.1.7 root 406: user mode. It will change when a dedicated libc will be used */
407: #define USE_STATIC_CODE_GEN_BUFFER
408: #endif
409:
410: #ifdef USE_STATIC_CODE_GEN_BUFFER
411: static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
412: #endif
413:
414: static void code_gen_alloc(unsigned long tb_size)
415: {
416: #ifdef USE_STATIC_CODE_GEN_BUFFER
417: code_gen_buffer = static_code_gen_buffer;
418: code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
419: map_exec(code_gen_buffer, code_gen_buffer_size);
420: #else
421: code_gen_buffer_size = tb_size;
422: if (code_gen_buffer_size == 0) {
423: #if defined(CONFIG_USER_ONLY)
424: /* in user mode, phys_ram_size is not meaningful */
425: code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
426: #else
1.1.1.10! root 427: /* XXX: needs adjustments */
! 428: code_gen_buffer_size = (unsigned long)(ram_size / 4);
1.1.1.7 root 429: #endif
430: }
431: if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
432: code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
433: /* The code gen buffer location may have constraints depending on
434: the host cpu and OS */
435: #if defined(__linux__)
436: {
437: int flags;
438: void *start = NULL;
439:
440: flags = MAP_PRIVATE | MAP_ANONYMOUS;
441: #if defined(__x86_64__)
442: flags |= MAP_32BIT;
443: /* Cannot map more than that */
444: if (code_gen_buffer_size > (800 * 1024 * 1024))
445: code_gen_buffer_size = (800 * 1024 * 1024);
446: #elif defined(__sparc_v9__)
447: // Map the buffer below 2G, so we can use direct calls and branches
448: flags |= MAP_FIXED;
449: start = (void *) 0x60000000UL;
450: if (code_gen_buffer_size > (512 * 1024 * 1024))
451: code_gen_buffer_size = (512 * 1024 * 1024);
452: #elif defined(__arm__)
453: /* Map the buffer below 32M, so we can use direct calls and branches */
454: flags |= MAP_FIXED;
455: start = (void *) 0x01000000UL;
456: if (code_gen_buffer_size > 16 * 1024 * 1024)
457: code_gen_buffer_size = 16 * 1024 * 1024;
458: #endif
459: code_gen_buffer = mmap(start, code_gen_buffer_size,
460: PROT_WRITE | PROT_READ | PROT_EXEC,
461: flags, -1, 0);
462: if (code_gen_buffer == MAP_FAILED) {
463: fprintf(stderr, "Could not allocate dynamic translator buffer\n");
464: exit(1);
465: }
466: }
1.1.1.10! root 467: #elif defined(__FreeBSD__) || defined(__DragonFly__)
1.1.1.7 root 468: {
469: int flags;
470: void *addr = NULL;
471: flags = MAP_PRIVATE | MAP_ANONYMOUS;
472: #if defined(__x86_64__)
473: /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
474: * 0x40000000 is free */
475: flags |= MAP_FIXED;
476: addr = (void *)0x40000000;
477: /* Cannot map more than that */
478: if (code_gen_buffer_size > (800 * 1024 * 1024))
479: code_gen_buffer_size = (800 * 1024 * 1024);
480: #endif
481: code_gen_buffer = mmap(addr, code_gen_buffer_size,
482: PROT_WRITE | PROT_READ | PROT_EXEC,
483: flags, -1, 0);
484: if (code_gen_buffer == MAP_FAILED) {
485: fprintf(stderr, "Could not allocate dynamic translator buffer\n");
486: exit(1);
487: }
488: }
489: #else
490: code_gen_buffer = qemu_malloc(code_gen_buffer_size);
491: map_exec(code_gen_buffer, code_gen_buffer_size);
492: #endif
493: #endif /* !USE_STATIC_CODE_GEN_BUFFER */
494: map_exec(code_gen_prologue, sizeof(code_gen_prologue));
495: code_gen_buffer_max_size = code_gen_buffer_size -
496: code_gen_max_block_size();
497: code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
498: tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
499: }
500:
501: /* Must be called before using the QEMU cpus. 'tb_size' is the size
502: (in bytes) allocated to the translation buffer. Zero means default
503: size. */
504: void cpu_exec_init_all(unsigned long tb_size)
505: {
506: cpu_gen_init();
507: code_gen_alloc(tb_size);
508: code_gen_ptr = code_gen_buffer;
509: page_init();
510: #if !defined(CONFIG_USER_ONLY)
511: io_mem_init();
512: #endif
513: }
514:
515: #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
516:
517: #define CPU_COMMON_SAVE_VERSION 1
518:
519: static void cpu_common_save(QEMUFile *f, void *opaque)
520: {
521: CPUState *env = opaque;
522:
1.1.1.10! root 523: cpu_synchronize_state(env, 0);
! 524:
1.1.1.7 root 525: qemu_put_be32s(f, &env->halted);
526: qemu_put_be32s(f, &env->interrupt_request);
527: }
528:
529: static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
530: {
531: CPUState *env = opaque;
532:
533: if (version_id != CPU_COMMON_SAVE_VERSION)
534: return -EINVAL;
535:
536: qemu_get_be32s(f, &env->halted);
537: qemu_get_be32s(f, &env->interrupt_request);
1.1.1.10! root 538: /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
! 539: version_id is increased. */
! 540: env->interrupt_request &= ~0x01;
1.1.1.7 root 541: tlb_flush(env, 1);
1.1.1.10! root 542: cpu_synchronize_state(env, 1);
1.1.1.7 root 543:
544: return 0;
545: }
1.1 root 546: #endif
547:
1.1.1.10! root 548: CPUState *qemu_get_cpu(int cpu)
! 549: {
! 550: CPUState *env = first_cpu;
! 551:
! 552: while (env) {
! 553: if (env->cpu_index == cpu)
! 554: break;
! 555: env = env->next_cpu;
! 556: }
! 557:
! 558: return env;
! 559: }
! 560:
1.1.1.2 root 561: void cpu_exec_init(CPUState *env)
1.1 root 562: {
1.1.1.2 root 563: CPUState **penv;
564: int cpu_index;
1.1 root 565:
1.1.1.10! root 566: #if defined(CONFIG_USER_ONLY)
! 567: cpu_list_lock();
! 568: #endif
1.1.1.2 root 569: env->next_cpu = NULL;
570: penv = &first_cpu;
571: cpu_index = 0;
572: while (*penv != NULL) {
1.1.1.10! root 573: penv = &(*penv)->next_cpu;
1.1.1.2 root 574: cpu_index++;
575: }
576: env->cpu_index = cpu_index;
1.1.1.10! root 577: env->numa_node = 0;
1.1.1.7 root 578: TAILQ_INIT(&env->breakpoints);
579: TAILQ_INIT(&env->watchpoints);
1.1.1.2 root 580: *penv = env;
1.1.1.10! root 581: #if defined(CONFIG_USER_ONLY)
! 582: cpu_list_unlock();
! 583: #endif
1.1.1.7 root 584: #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
585: register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
586: cpu_common_save, cpu_common_load, env);
587: register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
588: cpu_save, cpu_load, env);
589: #endif
1.1 root 590: }
591:
592: static inline void invalidate_page_bitmap(PageDesc *p)
593: {
594: if (p->code_bitmap) {
595: qemu_free(p->code_bitmap);
596: p->code_bitmap = NULL;
597: }
598: p->code_write_count = 0;
599: }
600:
601: /* set to NULL all the 'first_tb' fields in all PageDescs */
602: static void page_flush_tb(void)
603: {
604: int i, j;
605: PageDesc *p;
606:
607: for(i = 0; i < L1_SIZE; i++) {
608: p = l1_map[i];
609: if (p) {
610: for(j = 0; j < L2_SIZE; j++) {
611: p->first_tb = NULL;
612: invalidate_page_bitmap(p);
613: p++;
614: }
615: }
616: }
617: }
618:
619: /* flush all the translation blocks */
620: /* XXX: tb_flush is currently not thread safe */
1.1.1.2 root 621: void tb_flush(CPUState *env1)
1.1 root 622: {
1.1.1.2 root 623: CPUState *env;
1.1 root 624: #if defined(DEBUG_FLUSH)
1.1.1.6 root 625: printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
626: (unsigned long)(code_gen_ptr - code_gen_buffer),
627: nb_tbs, nb_tbs > 0 ?
628: ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
1.1 root 629: #endif
1.1.1.7 root 630: if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
631: cpu_abort(env1, "Internal error: code buffer overflow\n");
632:
1.1 root 633: nb_tbs = 0;
1.1.1.6 root 634:
1.1.1.2 root 635: for(env = first_cpu; env != NULL; env = env->next_cpu) {
636: memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
637: }
1.1 root 638:
639: memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
640: page_flush_tb();
641:
642: code_gen_ptr = code_gen_buffer;
643: /* XXX: flush processor icache at this point if cache flush is
644: expensive */
645: tb_flush_count++;
646: }
647:
648: #ifdef DEBUG_TB_CHECK
649:
1.1.1.6 root 650: static void tb_invalidate_check(target_ulong address)
1.1 root 651: {
652: TranslationBlock *tb;
653: int i;
654: address &= TARGET_PAGE_MASK;
1.1.1.3 root 655: for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
656: for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
1.1 root 657: if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
658: address >= tb->pc + tb->size)) {
1.1.1.10! root 659: printf("ERROR invalidate: address=" TARGET_FMT_lx
! 660: " PC=%08lx size=%04x\n",
1.1.1.3 root 661: address, (long)tb->pc, tb->size);
1.1 root 662: }
663: }
664: }
665: }
666:
667: /* verify that all the pages have correct rights for code */
668: static void tb_page_check(void)
669: {
670: TranslationBlock *tb;
671: int i, flags1, flags2;
1.1.1.6 root 672:
1.1.1.3 root 673: for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
674: for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
1.1 root 675: flags1 = page_get_flags(tb->pc);
676: flags2 = page_get_flags(tb->pc + tb->size - 1);
677: if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
678: printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1.1.1.3 root 679: (long)tb->pc, tb->size, flags1, flags2);
1.1 root 680: }
681: }
682: }
683: }
684:
685: #endif
686:
687: /* invalidate one TB */
688: static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
689: int next_offset)
690: {
691: TranslationBlock *tb1;
692: for(;;) {
693: tb1 = *ptb;
694: if (tb1 == tb) {
695: *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
696: break;
697: }
698: ptb = (TranslationBlock **)((char *)tb1 + next_offset);
699: }
700: }
701:
702: static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
703: {
704: TranslationBlock *tb1;
705: unsigned int n1;
706:
707: for(;;) {
708: tb1 = *ptb;
709: n1 = (long)tb1 & 3;
710: tb1 = (TranslationBlock *)((long)tb1 & ~3);
711: if (tb1 == tb) {
712: *ptb = tb1->page_next[n1];
713: break;
714: }
715: ptb = &tb1->page_next[n1];
716: }
717: }
718:
719: static inline void tb_jmp_remove(TranslationBlock *tb, int n)
720: {
721: TranslationBlock *tb1, **ptb;
722: unsigned int n1;
723:
724: ptb = &tb->jmp_next[n];
725: tb1 = *ptb;
726: if (tb1) {
727: /* find tb(n) in circular list */
728: for(;;) {
729: tb1 = *ptb;
730: n1 = (long)tb1 & 3;
731: tb1 = (TranslationBlock *)((long)tb1 & ~3);
732: if (n1 == n && tb1 == tb)
733: break;
734: if (n1 == 2) {
735: ptb = &tb1->jmp_first;
736: } else {
737: ptb = &tb1->jmp_next[n1];
738: }
739: }
740: /* now we can suppress tb(n) from the list */
741: *ptb = tb->jmp_next[n];
742:
743: tb->jmp_next[n] = NULL;
744: }
745: }
746:
747: /* reset the jump entry 'n' of a TB so that it is not chained to
748: another TB */
749: static inline void tb_reset_jump(TranslationBlock *tb, int n)
750: {
751: tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
752: }
753:
1.1.1.7 root 754: void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
1.1 root 755: {
1.1.1.2 root 756: CPUState *env;
757: PageDesc *p;
1.1 root 758: unsigned int h, n1;
1.1.1.7 root 759: target_phys_addr_t phys_pc;
1.1.1.2 root 760: TranslationBlock *tb1, *tb2;
1.1.1.6 root 761:
1.1.1.2 root 762: /* remove the TB from the hash list */
763: phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
764: h = tb_phys_hash_func(phys_pc);
1.1.1.6 root 765: tb_remove(&tb_phys_hash[h], tb,
1.1.1.2 root 766: offsetof(TranslationBlock, phys_hash_next));
767:
768: /* remove the TB from the page list */
769: if (tb->page_addr[0] != page_addr) {
770: p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
771: tb_page_remove(&p->first_tb, tb);
772: invalidate_page_bitmap(p);
773: }
774: if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
775: p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
776: tb_page_remove(&p->first_tb, tb);
777: invalidate_page_bitmap(p);
778: }
779:
1.1 root 780: tb_invalidated_flag = 1;
781:
782: /* remove the TB from the hash list */
1.1.1.2 root 783: h = tb_jmp_cache_hash_func(tb->pc);
784: for(env = first_cpu; env != NULL; env = env->next_cpu) {
785: if (env->tb_jmp_cache[h] == tb)
786: env->tb_jmp_cache[h] = NULL;
1.1 root 787: }
788:
789: /* suppress this TB from the two jump lists */
790: tb_jmp_remove(tb, 0);
791: tb_jmp_remove(tb, 1);
792:
793: /* suppress any remaining jumps to this TB */
794: tb1 = tb->jmp_first;
795: for(;;) {
796: n1 = (long)tb1 & 3;
797: if (n1 == 2)
798: break;
799: tb1 = (TranslationBlock *)((long)tb1 & ~3);
800: tb2 = tb1->jmp_next[n1];
801: tb_reset_jump(tb1, n1);
802: tb1->jmp_next[n1] = NULL;
803: tb1 = tb2;
804: }
805: tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
806:
807: tb_phys_invalidate_count++;
808: }
809:
810: static inline void set_bits(uint8_t *tab, int start, int len)
811: {
812: int end, mask, end1;
813:
814: end = start + len;
815: tab += start >> 3;
816: mask = 0xff << (start & 7);
817: if ((start & ~7) == (end & ~7)) {
818: if (start < end) {
819: mask &= ~(0xff << (end & 7));
820: *tab |= mask;
821: }
822: } else {
823: *tab++ |= mask;
824: start = (start + 8) & ~7;
825: end1 = end & ~7;
826: while (start < end1) {
827: *tab++ = 0xff;
828: start += 8;
829: }
830: if (start < end) {
831: mask = ~(0xff << (end & 7));
832: *tab |= mask;
833: }
834: }
835: }
836:
837: static void build_page_bitmap(PageDesc *p)
838: {
839: int n, tb_start, tb_end;
840: TranslationBlock *tb;
1.1.1.6 root 841:
1.1.1.7 root 842: p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
1.1 root 843:
844: tb = p->first_tb;
845: while (tb != NULL) {
846: n = (long)tb & 3;
847: tb = (TranslationBlock *)((long)tb & ~3);
848: /* NOTE: this is subtle as a TB may span two physical pages */
849: if (n == 0) {
850: /* NOTE: tb_end may be after the end of the page, but
851: it is not a problem */
852: tb_start = tb->pc & ~TARGET_PAGE_MASK;
853: tb_end = tb_start + tb->size;
854: if (tb_end > TARGET_PAGE_SIZE)
855: tb_end = TARGET_PAGE_SIZE;
856: } else {
857: tb_start = 0;
858: tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
859: }
860: set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
861: tb = tb->page_next[n];
862: }
863: }
864:
1.1.1.7 root 865: TranslationBlock *tb_gen_code(CPUState *env,
866: target_ulong pc, target_ulong cs_base,
867: int flags, int cflags)
1.1 root 868: {
869: TranslationBlock *tb;
870: uint8_t *tc_ptr;
871: target_ulong phys_pc, phys_page2, virt_page2;
872: int code_gen_size;
873:
874: phys_pc = get_phys_addr_code(env, pc);
875: tb = tb_alloc(pc);
876: if (!tb) {
877: /* flush must be done */
878: tb_flush(env);
879: /* cannot fail at this point */
880: tb = tb_alloc(pc);
1.1.1.7 root 881: /* Don't forget to invalidate previous TB info. */
882: tb_invalidated_flag = 1;
1.1 root 883: }
884: tc_ptr = code_gen_ptr;
885: tb->tc_ptr = tc_ptr;
886: tb->cs_base = cs_base;
887: tb->flags = flags;
888: tb->cflags = cflags;
1.1.1.6 root 889: cpu_gen_code(env, tb, &code_gen_size);
1.1 root 890: code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1.1.1.6 root 891:
1.1 root 892: /* check next page if needed */
893: virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
894: phys_page2 = -1;
895: if ((pc & TARGET_PAGE_MASK) != virt_page2) {
896: phys_page2 = get_phys_addr_code(env, virt_page2);
897: }
898: tb_link_phys(tb, phys_pc, phys_page2);
1.1.1.7 root 899: return tb;
1.1 root 900: }
1.1.1.6 root 901:
1.1 root 902: /* invalidate all TBs which intersect with the target physical page
903: starting in range [start;end[. NOTE: start and end must refer to
904: the same physical page. 'is_cpu_write_access' should be true if called
905: from a real cpu write access: the virtual CPU will exit the current
906: TB if code is modified inside this TB. */
1.1.1.7 root 907: void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
1.1 root 908: int is_cpu_write_access)
909: {
1.1.1.7 root 910: TranslationBlock *tb, *tb_next, *saved_tb;
1.1 root 911: CPUState *env = cpu_single_env;
912: target_ulong tb_start, tb_end;
1.1.1.7 root 913: PageDesc *p;
914: int n;
915: #ifdef TARGET_HAS_PRECISE_SMC
916: int current_tb_not_found = is_cpu_write_access;
917: TranslationBlock *current_tb = NULL;
918: int current_tb_modified = 0;
919: target_ulong current_pc = 0;
920: target_ulong current_cs_base = 0;
921: int current_flags = 0;
922: #endif /* TARGET_HAS_PRECISE_SMC */
1.1 root 923:
924: p = page_find(start >> TARGET_PAGE_BITS);
1.1.1.6 root 925: if (!p)
1.1 root 926: return;
1.1.1.6 root 927: if (!p->code_bitmap &&
1.1 root 928: ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
929: is_cpu_write_access) {
930: /* build code bitmap */
931: build_page_bitmap(p);
932: }
933:
934: /* we remove all the TBs in the range [start, end[ */
935: /* XXX: see if in some cases it could be faster to invalidate all the code */
936: tb = p->first_tb;
937: while (tb != NULL) {
938: n = (long)tb & 3;
939: tb = (TranslationBlock *)((long)tb & ~3);
940: tb_next = tb->page_next[n];
941: /* NOTE: this is subtle as a TB may span two physical pages */
942: if (n == 0) {
943: /* NOTE: tb_end may be after the end of the page, but
944: it is not a problem */
945: tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
946: tb_end = tb_start + tb->size;
947: } else {
948: tb_start = tb->page_addr[1];
949: tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
950: }
951: if (!(tb_end <= start || tb_start >= end)) {
952: #ifdef TARGET_HAS_PRECISE_SMC
953: if (current_tb_not_found) {
954: current_tb_not_found = 0;
955: current_tb = NULL;
1.1.1.7 root 956: if (env->mem_io_pc) {
1.1 root 957: /* now we have a real cpu fault */
1.1.1.7 root 958: current_tb = tb_find_pc(env->mem_io_pc);
1.1 root 959: }
960: }
961: if (current_tb == tb &&
1.1.1.7 root 962: (current_tb->cflags & CF_COUNT_MASK) != 1) {
1.1 root 963: /* If we are modifying the current TB, we must stop
964: its execution. We could be more precise by checking
965: that the modification is after the current PC, but it
966: would require a specialized function to partially
967: restore the CPU state */
1.1.1.6 root 968:
1.1 root 969: current_tb_modified = 1;
1.1.1.6 root 970: cpu_restore_state(current_tb, env,
1.1.1.7 root 971: env->mem_io_pc, NULL);
972: cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
973: ¤t_flags);
1.1 root 974: }
975: #endif /* TARGET_HAS_PRECISE_SMC */
1.1.1.2 root 976: /* we need to do that to handle the case where a signal
977: occurs while doing tb_phys_invalidate() */
978: saved_tb = NULL;
979: if (env) {
980: saved_tb = env->current_tb;
981: env->current_tb = NULL;
982: }
1.1 root 983: tb_phys_invalidate(tb, -1);
1.1.1.2 root 984: if (env) {
985: env->current_tb = saved_tb;
986: if (env->interrupt_request && env->current_tb)
987: cpu_interrupt(env, env->interrupt_request);
988: }
1.1 root 989: }
990: tb = tb_next;
991: }
992: #if !defined(CONFIG_USER_ONLY)
993: /* if no code remaining, no need to continue to use slow writes */
994: if (!p->first_tb) {
995: invalidate_page_bitmap(p);
996: if (is_cpu_write_access) {
1.1.1.7 root 997: tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1.1 root 998: }
999: }
1000: #endif
1001: #ifdef TARGET_HAS_PRECISE_SMC
1002: if (current_tb_modified) {
1003: /* we generate a block containing just the instruction
1004: modifying the memory. It will ensure that it cannot modify
1005: itself */
1006: env->current_tb = NULL;
1.1.1.7 root 1007: tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1.1 root 1008: cpu_resume_from_signal(env, NULL);
1009: }
1010: #endif
1011: }
1012:
1013: /* len must be <= 8 and start must be a multiple of len */
1.1.1.7 root 1014: static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1.1 root 1015: {
1016: PageDesc *p;
1017: int offset, b;
1018: #if 0
1019: if (1) {
1.1.1.7 root 1020: qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1021: cpu_single_env->mem_io_vaddr, len,
1022: cpu_single_env->eip,
1023: cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1.1 root 1024: }
1025: #endif
1026: p = page_find(start >> TARGET_PAGE_BITS);
1.1.1.6 root 1027: if (!p)
1.1 root 1028: return;
1029: if (p->code_bitmap) {
1030: offset = start & ~TARGET_PAGE_MASK;
1031: b = p->code_bitmap[offset >> 3] >> (offset & 7);
1032: if (b & ((1 << len) - 1))
1033: goto do_invalidate;
1034: } else {
1035: do_invalidate:
1036: tb_invalidate_phys_page_range(start, start + len, 1);
1037: }
1038: }
1039:
1040: #if !defined(CONFIG_SOFTMMU)
1.1.1.7 root 1041: static void tb_invalidate_phys_page(target_phys_addr_t addr,
1.1 root 1042: unsigned long pc, void *puc)
1043: {
1.1.1.7 root 1044: TranslationBlock *tb;
1.1 root 1045: PageDesc *p;
1.1.1.7 root 1046: int n;
1.1 root 1047: #ifdef TARGET_HAS_PRECISE_SMC
1.1.1.7 root 1048: TranslationBlock *current_tb = NULL;
1.1 root 1049: CPUState *env = cpu_single_env;
1.1.1.7 root 1050: int current_tb_modified = 0;
1051: target_ulong current_pc = 0;
1052: target_ulong current_cs_base = 0;
1053: int current_flags = 0;
1.1 root 1054: #endif
1055:
1056: addr &= TARGET_PAGE_MASK;
1057: p = page_find(addr >> TARGET_PAGE_BITS);
1.1.1.6 root 1058: if (!p)
1.1 root 1059: return;
1060: tb = p->first_tb;
1061: #ifdef TARGET_HAS_PRECISE_SMC
1062: if (tb && pc != 0) {
1063: current_tb = tb_find_pc(pc);
1064: }
1065: #endif
1066: while (tb != NULL) {
1067: n = (long)tb & 3;
1068: tb = (TranslationBlock *)((long)tb & ~3);
1069: #ifdef TARGET_HAS_PRECISE_SMC
1070: if (current_tb == tb &&
1.1.1.7 root 1071: (current_tb->cflags & CF_COUNT_MASK) != 1) {
1.1 root 1072: /* If we are modifying the current TB, we must stop
1073: its execution. We could be more precise by checking
1074: that the modification is after the current PC, but it
1075: would require a specialized function to partially
1076: restore the CPU state */
1.1.1.6 root 1077:
1.1 root 1078: current_tb_modified = 1;
1079: cpu_restore_state(current_tb, env, pc, puc);
1.1.1.7 root 1080: cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
1081: ¤t_flags);
1.1 root 1082: }
1083: #endif /* TARGET_HAS_PRECISE_SMC */
1084: tb_phys_invalidate(tb, addr);
1085: tb = tb->page_next[n];
1086: }
1087: p->first_tb = NULL;
1088: #ifdef TARGET_HAS_PRECISE_SMC
1089: if (current_tb_modified) {
1090: /* we generate a block containing just the instruction
1091: modifying the memory. It will ensure that it cannot modify
1092: itself */
1093: env->current_tb = NULL;
1.1.1.7 root 1094: tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1.1 root 1095: cpu_resume_from_signal(env, puc);
1096: }
1097: #endif
1098: }
1099: #endif
1100:
1101: /* add the tb in the target page and protect it if necessary */
1.1.1.6 root 1102: static inline void tb_alloc_page(TranslationBlock *tb,
1.1.1.3 root 1103: unsigned int n, target_ulong page_addr)
1.1 root 1104: {
1105: PageDesc *p;
1106: TranslationBlock *last_first_tb;
1107:
1108: tb->page_addr[n] = page_addr;
1109: p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1110: tb->page_next[n] = p->first_tb;
1111: last_first_tb = p->first_tb;
1112: p->first_tb = (TranslationBlock *)((long)tb | n);
1113: invalidate_page_bitmap(p);
1114:
1115: #if defined(TARGET_HAS_SMC) || 1
1116:
1117: #if defined(CONFIG_USER_ONLY)
1118: if (p->flags & PAGE_WRITE) {
1.1.1.3 root 1119: target_ulong addr;
1120: PageDesc *p2;
1.1 root 1121: int prot;
1122:
1123: /* force the host page as non writable (writes will have a
1124: page fault + mprotect overhead) */
1.1.1.3 root 1125: page_addr &= qemu_host_page_mask;
1.1 root 1126: prot = 0;
1.1.1.3 root 1127: for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1128: addr += TARGET_PAGE_SIZE) {
1129:
1130: p2 = page_find (addr >> TARGET_PAGE_BITS);
1131: if (!p2)
1132: continue;
1133: prot |= p2->flags;
1134: p2->flags &= ~PAGE_WRITE;
1135: page_get_flags(addr);
1136: }
1.1.1.6 root 1137: mprotect(g2h(page_addr), qemu_host_page_size,
1.1 root 1138: (prot & PAGE_BITS) & ~PAGE_WRITE);
1139: #ifdef DEBUG_TB_INVALIDATE
1.1.1.6 root 1140: printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1.1.1.3 root 1141: page_addr);
1.1 root 1142: #endif
1143: }
1144: #else
1145: /* if some code is already present, then the pages are already
1146: protected. So we handle the case where only the first TB is
1147: allocated in a physical page */
1148: if (!last_first_tb) {
1.1.1.2 root 1149: tlb_protect_code(page_addr);
1.1 root 1150: }
1151: #endif
1152:
1153: #endif /* TARGET_HAS_SMC */
1154: }
1155:
1156: /* Allocate a new translation block. Flush the translation buffer if
1157: too many translation blocks or too much generated code. */
1158: TranslationBlock *tb_alloc(target_ulong pc)
1159: {
1160: TranslationBlock *tb;
1161:
1.1.1.7 root 1162: if (nb_tbs >= code_gen_max_blocks ||
1163: (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1.1 root 1164: return NULL;
1165: tb = &tbs[nb_tbs++];
1166: tb->pc = pc;
1167: tb->cflags = 0;
1168: return tb;
1169: }
1170:
1.1.1.7 root 1171: void tb_free(TranslationBlock *tb)
1172: {
1173: /* In practice this is mostly used for single use temporary TB
1174: Ignore the hard cases and just back up if this TB happens to
1175: be the last one generated. */
1176: if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1177: code_gen_ptr = tb->tc_ptr;
1178: nb_tbs--;
1179: }
1180: }
1181:
1.1 root 1182: /* add a new TB and link it to the physical page tables. phys_page2 is
1183: (-1) to indicate that only one page contains the TB. */
1.1.1.6 root 1184: void tb_link_phys(TranslationBlock *tb,
1.1 root 1185: target_ulong phys_pc, target_ulong phys_page2)
1186: {
1187: unsigned int h;
1188: TranslationBlock **ptb;
1189:
1.1.1.7 root 1190: /* Grab the mmap lock to stop another thread invalidating this TB
1191: before we are done. */
1192: mmap_lock();
1.1 root 1193: /* add in the physical hash table */
1194: h = tb_phys_hash_func(phys_pc);
1195: ptb = &tb_phys_hash[h];
1196: tb->phys_hash_next = *ptb;
1197: *ptb = tb;
1198:
1199: /* add in the page list */
1200: tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1201: if (phys_page2 != -1)
1202: tb_alloc_page(tb, 1, phys_page2);
1203: else
1204: tb->page_addr[1] = -1;
1205:
1206: tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1207: tb->jmp_next[0] = NULL;
1208: tb->jmp_next[1] = NULL;
1209:
1210: /* init original jump addresses */
1211: if (tb->tb_next_offset[0] != 0xffff)
1212: tb_reset_jump(tb, 0);
1213: if (tb->tb_next_offset[1] != 0xffff)
1214: tb_reset_jump(tb, 1);
1.1.1.2 root 1215:
1216: #ifdef DEBUG_TB_CHECK
1217: tb_page_check();
1218: #endif
1.1.1.7 root 1219: mmap_unlock();
1.1 root 1220: }
1221:
1222: /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1223: tb[1].tc_ptr. Return NULL if not found */
1224: TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1225: {
1226: int m_min, m_max, m;
1227: unsigned long v;
1228: TranslationBlock *tb;
1229:
1230: if (nb_tbs <= 0)
1231: return NULL;
1232: if (tc_ptr < (unsigned long)code_gen_buffer ||
1233: tc_ptr >= (unsigned long)code_gen_ptr)
1234: return NULL;
1235: /* binary search (cf Knuth) */
1236: m_min = 0;
1237: m_max = nb_tbs - 1;
1238: while (m_min <= m_max) {
1239: m = (m_min + m_max) >> 1;
1240: tb = &tbs[m];
1241: v = (unsigned long)tb->tc_ptr;
1242: if (v == tc_ptr)
1243: return tb;
1244: else if (tc_ptr < v) {
1245: m_max = m - 1;
1246: } else {
1247: m_min = m + 1;
1248: }
1.1.1.6 root 1249: }
1.1 root 1250: return &tbs[m_max];
1251: }
1252:
1253: static void tb_reset_jump_recursive(TranslationBlock *tb);
1254:
1255: static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1256: {
1257: TranslationBlock *tb1, *tb_next, **ptb;
1258: unsigned int n1;
1259:
1260: tb1 = tb->jmp_next[n];
1261: if (tb1 != NULL) {
1262: /* find head of list */
1263: for(;;) {
1264: n1 = (long)tb1 & 3;
1265: tb1 = (TranslationBlock *)((long)tb1 & ~3);
1266: if (n1 == 2)
1267: break;
1268: tb1 = tb1->jmp_next[n1];
1269: }
1270: /* we are now sure now that tb jumps to tb1 */
1271: tb_next = tb1;
1272:
1273: /* remove tb from the jmp_first list */
1274: ptb = &tb_next->jmp_first;
1275: for(;;) {
1276: tb1 = *ptb;
1277: n1 = (long)tb1 & 3;
1278: tb1 = (TranslationBlock *)((long)tb1 & ~3);
1279: if (n1 == n && tb1 == tb)
1280: break;
1281: ptb = &tb1->jmp_next[n1];
1282: }
1283: *ptb = tb->jmp_next[n];
1284: tb->jmp_next[n] = NULL;
1.1.1.6 root 1285:
1.1 root 1286: /* suppress the jump to next tb in generated code */
1287: tb_reset_jump(tb, n);
1288:
1289: /* suppress jumps in the tb on which we could have jumped */
1290: tb_reset_jump_recursive(tb_next);
1291: }
1292: }
1293:
1294: static void tb_reset_jump_recursive(TranslationBlock *tb)
1295: {
1296: tb_reset_jump_recursive2(tb, 0);
1297: tb_reset_jump_recursive2(tb, 1);
1298: }
1299:
1300: #if defined(TARGET_HAS_ICE)
1301: static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1302: {
1.1.1.6 root 1303: target_phys_addr_t addr;
1304: target_ulong pd;
1.1.1.3 root 1305: ram_addr_t ram_addr;
1306: PhysPageDesc *p;
1.1 root 1307:
1.1.1.3 root 1308: addr = cpu_get_phys_page_debug(env, pc);
1309: p = phys_page_find(addr >> TARGET_PAGE_BITS);
1310: if (!p) {
1311: pd = IO_MEM_UNASSIGNED;
1312: } else {
1313: pd = p->phys_offset;
1314: }
1315: ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1316: tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1.1 root 1317: }
1318: #endif
1319:
1.1.1.6 root 1320: /* Add a watchpoint. */
1.1.1.7 root 1321: int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1322: int flags, CPUWatchpoint **watchpoint)
1.1.1.6 root 1323: {
1.1.1.7 root 1324: target_ulong len_mask = ~(len - 1);
1325: CPUWatchpoint *wp;
1326:
1327: /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1328: if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1329: fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1330: TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1331: return -EINVAL;
1332: }
1333: wp = qemu_malloc(sizeof(*wp));
1334:
1335: wp->vaddr = addr;
1336: wp->len_mask = len_mask;
1337: wp->flags = flags;
1338:
1339: /* keep all GDB-injected watchpoints in front */
1340: if (flags & BP_GDB)
1341: TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1342: else
1343: TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1344:
1345: tlb_flush_page(env, addr);
1346:
1347: if (watchpoint)
1348: *watchpoint = wp;
1349: return 0;
1350: }
1.1.1.6 root 1351:
1.1.1.7 root 1352: /* Remove a specific watchpoint. */
1353: int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1354: int flags)
1355: {
1356: target_ulong len_mask = ~(len - 1);
1357: CPUWatchpoint *wp;
1358:
1359: TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1360: if (addr == wp->vaddr && len_mask == wp->len_mask
1361: && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1362: cpu_watchpoint_remove_by_ref(env, wp);
1.1.1.6 root 1363: return 0;
1.1.1.7 root 1364: }
1.1.1.6 root 1365: }
1.1.1.7 root 1366: return -ENOENT;
1367: }
1.1.1.6 root 1368:
1.1.1.7 root 1369: /* Remove a specific watchpoint by reference. */
1370: void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1371: {
1372: TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1373:
1374: tlb_flush_page(env, watchpoint->vaddr);
1375:
1376: qemu_free(watchpoint);
1.1.1.6 root 1377: }
1378:
1.1.1.7 root 1379: /* Remove all matching watchpoints. */
1380: void cpu_watchpoint_remove_all(CPUState *env, int mask)
1.1.1.6 root 1381: {
1.1.1.7 root 1382: CPUWatchpoint *wp, *next;
1.1.1.6 root 1383:
1.1.1.7 root 1384: TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1385: if (wp->flags & mask)
1386: cpu_watchpoint_remove_by_ref(env, wp);
1.1.1.6 root 1387: }
1388: }
1389:
1.1.1.7 root 1390: /* Add a breakpoint. */
1391: int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1392: CPUBreakpoint **breakpoint)
1.1 root 1393: {
1394: #if defined(TARGET_HAS_ICE)
1.1.1.7 root 1395: CPUBreakpoint *bp;
1.1.1.6 root 1396:
1.1.1.7 root 1397: bp = qemu_malloc(sizeof(*bp));
1.1 root 1398:
1.1.1.7 root 1399: bp->pc = pc;
1400: bp->flags = flags;
1401:
1402: /* keep all GDB-injected breakpoints in front */
1403: if (flags & BP_GDB)
1404: TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1405: else
1406: TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1.1.1.6 root 1407:
1.1 root 1408: breakpoint_invalidate(env, pc);
1.1.1.7 root 1409:
1410: if (breakpoint)
1411: *breakpoint = bp;
1.1 root 1412: return 0;
1413: #else
1.1.1.7 root 1414: return -ENOSYS;
1.1 root 1415: #endif
1416: }
1417:
1.1.1.7 root 1418: /* Remove a specific breakpoint. */
1419: int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1.1 root 1420: {
1421: #if defined(TARGET_HAS_ICE)
1.1.1.7 root 1422: CPUBreakpoint *bp;
1.1 root 1423:
1.1.1.7 root 1424: TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1425: if (bp->pc == pc && bp->flags == flags) {
1426: cpu_breakpoint_remove_by_ref(env, bp);
1427: return 0;
1428: }
1429: }
1430: return -ENOENT;
1.1 root 1431: #else
1.1.1.7 root 1432: return -ENOSYS;
1433: #endif
1434: }
1435:
1436: /* Remove a specific breakpoint by reference. */
1437: void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1438: {
1439: #if defined(TARGET_HAS_ICE)
1440: TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1441:
1442: breakpoint_invalidate(env, breakpoint->pc);
1443:
1444: qemu_free(breakpoint);
1445: #endif
1446: }
1447:
1448: /* Remove all matching breakpoints. */
1449: void cpu_breakpoint_remove_all(CPUState *env, int mask)
1450: {
1451: #if defined(TARGET_HAS_ICE)
1452: CPUBreakpoint *bp, *next;
1453:
1454: TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1455: if (bp->flags & mask)
1456: cpu_breakpoint_remove_by_ref(env, bp);
1457: }
1.1 root 1458: #endif
1459: }
1460:
1461: /* enable or disable single step mode. EXCP_DEBUG is returned by the
1462: CPU loop after each instruction */
1463: void cpu_single_step(CPUState *env, int enabled)
1464: {
1465: #if defined(TARGET_HAS_ICE)
1466: if (env->singlestep_enabled != enabled) {
1467: env->singlestep_enabled = enabled;
1.1.1.10! root 1468: if (kvm_enabled())
! 1469: kvm_update_guest_debug(env, 0);
! 1470: else {
! 1471: /* must flush all the translated code to avoid inconsistencies */
! 1472: /* XXX: only flush what is necessary */
! 1473: tb_flush(env);
! 1474: }
1.1 root 1475: }
1476: #endif
1477: }
1478:
1479: /* enable or disable low levels log */
1480: void cpu_set_log(int log_flags)
1481: {
1482: loglevel = log_flags;
1483: if (loglevel && !logfile) {
1.1.1.6 root 1484: logfile = fopen(logfilename, log_append ? "a" : "w");
1.1 root 1485: if (!logfile) {
1486: perror(logfilename);
1487: _exit(1);
1488: }
1489: #if !defined(CONFIG_SOFTMMU)
1490: /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1491: {
1.1.1.7 root 1492: static char logfile_buf[4096];
1.1 root 1493: setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1494: }
1495: #else
1496: setvbuf(logfile, NULL, _IOLBF, 0);
1497: #endif
1.1.1.6 root 1498: log_append = 1;
1499: }
1500: if (!loglevel && logfile) {
1501: fclose(logfile);
1502: logfile = NULL;
1.1 root 1503: }
1504: }
1505:
1506: void cpu_set_log_filename(const char *filename)
1507: {
1508: logfilename = strdup(filename);
1.1.1.6 root 1509: if (logfile) {
1510: fclose(logfile);
1511: logfile = NULL;
1512: }
1513: cpu_set_log(loglevel);
1.1 root 1514: }
1515:
1.1.1.10! root 1516: static void cpu_unlink_tb(CPUState *env)
1.1 root 1517: {
1.1.1.10! root 1518: #if defined(USE_NPTL)
! 1519: /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
! 1520: problem and hope the cpu will stop of its own accord. For userspace
! 1521: emulation this often isn't actually as bad as it sounds. Often
! 1522: signals are used primarily to interrupt blocking syscalls. */
! 1523: #else
1.1 root 1524: TranslationBlock *tb;
1.1.1.7 root 1525: static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1.1 root 1526:
1.1.1.10! root 1527: tb = env->current_tb;
! 1528: /* if the cpu is currently executing code, we must unlink it and
! 1529: all the potentially executing TB */
! 1530: if (tb && !testandset(&interrupt_lock)) {
! 1531: env->current_tb = NULL;
! 1532: tb_reset_jump_recursive(tb);
! 1533: resetlock(&interrupt_lock);
1.1.1.8 root 1534: }
1.1.1.10! root 1535: #endif
! 1536: }
! 1537:
! 1538: /* mask must never be zero, except for A20 change call */
! 1539: void cpu_interrupt(CPUState *env, int mask)
! 1540: {
! 1541: int old_mask;
1.1.1.8 root 1542:
1.1.1.7 root 1543: old_mask = env->interrupt_request;
1.1 root 1544: env->interrupt_request |= mask;
1.1.1.10! root 1545:
! 1546: #ifndef CONFIG_USER_ONLY
! 1547: /*
! 1548: * If called from iothread context, wake the target cpu in
! 1549: * case its halted.
! 1550: */
! 1551: if (!qemu_cpu_self(env)) {
! 1552: qemu_cpu_kick(env);
! 1553: return;
! 1554: }
! 1555: #endif
! 1556:
1.1.1.7 root 1557: if (use_icount) {
1558: env->icount_decr.u16.high = 0xffff;
1559: #ifndef CONFIG_USER_ONLY
1560: if (!can_do_io(env)
1.1.1.8 root 1561: && (mask & ~old_mask) != 0) {
1.1.1.7 root 1562: cpu_abort(env, "Raised interrupt while not in I/O function");
1563: }
1564: #endif
1565: } else {
1.1.1.10! root 1566: cpu_unlink_tb(env);
1.1 root 1567: }
1568: }
1569:
1570: void cpu_reset_interrupt(CPUState *env, int mask)
1571: {
1572: env->interrupt_request &= ~mask;
1573: }
1574:
1.1.1.10! root 1575: void cpu_exit(CPUState *env)
! 1576: {
! 1577: env->exit_request = 1;
! 1578: cpu_unlink_tb(env);
! 1579: }
! 1580:
1.1.1.7 root 1581: const CPULogItem cpu_log_items[] = {
1.1.1.6 root 1582: { CPU_LOG_TB_OUT_ASM, "out_asm",
1.1 root 1583: "show generated host assembly code for each compiled TB" },
1584: { CPU_LOG_TB_IN_ASM, "in_asm",
1585: "show target assembly code for each compiled TB" },
1.1.1.6 root 1586: { CPU_LOG_TB_OP, "op",
1.1.1.7 root 1587: "show micro ops for each compiled TB" },
1.1 root 1588: { CPU_LOG_TB_OP_OPT, "op_opt",
1.1.1.7 root 1589: "show micro ops "
1590: #ifdef TARGET_I386
1591: "before eflags optimization and "
1.1 root 1592: #endif
1.1.1.7 root 1593: "after liveness analysis" },
1.1 root 1594: { CPU_LOG_INT, "int",
1595: "show interrupts/exceptions in short format" },
1596: { CPU_LOG_EXEC, "exec",
1597: "show trace before each executed TB (lots of logs)" },
1598: { CPU_LOG_TB_CPU, "cpu",
1.1.1.6 root 1599: "show CPU state before block translation" },
1.1 root 1600: #ifdef TARGET_I386
1601: { CPU_LOG_PCALL, "pcall",
1602: "show protected mode far calls/returns/exceptions" },
1.1.1.7 root 1603: { CPU_LOG_RESET, "cpu_reset",
1604: "show CPU state before CPU resets" },
1.1 root 1605: #endif
1606: #ifdef DEBUG_IOPORT
1607: { CPU_LOG_IOPORT, "ioport",
1608: "show all i/o ports accesses" },
1609: #endif
1610: { 0, NULL, NULL },
1611: };
1612:
1613: static int cmp1(const char *s1, int n, const char *s2)
1614: {
1615: if (strlen(s2) != n)
1616: return 0;
1617: return memcmp(s1, s2, n) == 0;
1618: }
1.1.1.6 root 1619:
1.1 root 1620: /* takes a comma separated list of log masks. Return 0 if error. */
1621: int cpu_str_to_log_mask(const char *str)
1622: {
1.1.1.7 root 1623: const CPULogItem *item;
1.1 root 1624: int mask;
1625: const char *p, *p1;
1626:
1627: p = str;
1628: mask = 0;
1629: for(;;) {
1630: p1 = strchr(p, ',');
1631: if (!p1)
1632: p1 = p + strlen(p);
1633: if(cmp1(p,p1-p,"all")) {
1634: for(item = cpu_log_items; item->mask != 0; item++) {
1635: mask |= item->mask;
1636: }
1637: } else {
1638: for(item = cpu_log_items; item->mask != 0; item++) {
1639: if (cmp1(p, p1 - p, item->name))
1640: goto found;
1641: }
1642: return 0;
1643: }
1644: found:
1645: mask |= item->mask;
1646: if (*p1 != ',')
1647: break;
1648: p = p1 + 1;
1649: }
1650: return mask;
1651: }
1652:
1653: void cpu_abort(CPUState *env, const char *fmt, ...)
1654: {
1655: va_list ap;
1.1.1.6 root 1656: va_list ap2;
1.1 root 1657:
1658: va_start(ap, fmt);
1.1.1.6 root 1659: va_copy(ap2, ap);
1.1 root 1660: fprintf(stderr, "qemu: fatal: ");
1661: vfprintf(stderr, fmt, ap);
1662: fprintf(stderr, "\n");
1663: #ifdef TARGET_I386
1664: cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1665: #else
1666: cpu_dump_state(env, stderr, fprintf, 0);
1667: #endif
1.1.1.7 root 1668: if (qemu_log_enabled()) {
1669: qemu_log("qemu: fatal: ");
1670: qemu_log_vprintf(fmt, ap2);
1671: qemu_log("\n");
1.1.1.6 root 1672: #ifdef TARGET_I386
1.1.1.7 root 1673: log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1.1.1.6 root 1674: #else
1.1.1.7 root 1675: log_cpu_state(env, 0);
1.1.1.6 root 1676: #endif
1.1.1.7 root 1677: qemu_log_flush();
1678: qemu_log_close();
1.1.1.6 root 1679: }
1680: va_end(ap2);
1.1 root 1681: va_end(ap);
1682: abort();
1683: }
1684:
1.1.1.6 root 1685: CPUState *cpu_copy(CPUState *env)
1686: {
1687: CPUState *new_env = cpu_init(env->cpu_model_str);
1688: CPUState *next_cpu = new_env->next_cpu;
1689: int cpu_index = new_env->cpu_index;
1.1.1.7 root 1690: #if defined(TARGET_HAS_ICE)
1691: CPUBreakpoint *bp;
1692: CPUWatchpoint *wp;
1693: #endif
1694:
1.1.1.6 root 1695: memcpy(new_env, env, sizeof(CPUState));
1.1.1.7 root 1696:
1697: /* Preserve chaining and index. */
1.1.1.6 root 1698: new_env->next_cpu = next_cpu;
1699: new_env->cpu_index = cpu_index;
1.1.1.7 root 1700:
1701: /* Clone all break/watchpoints.
1702: Note: Once we support ptrace with hw-debug register access, make sure
1703: BP_CPU break/watchpoints are handled correctly on clone. */
1704: TAILQ_INIT(&env->breakpoints);
1705: TAILQ_INIT(&env->watchpoints);
1706: #if defined(TARGET_HAS_ICE)
1707: TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1708: cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1709: }
1710: TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1711: cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1712: wp->flags, NULL);
1713: }
1714: #endif
1715:
1.1.1.6 root 1716: return new_env;
1717: }
1718:
1.1 root 1719: #if !defined(CONFIG_USER_ONLY)
1720:
1.1.1.7 root 1721: static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1722: {
1723: unsigned int i;
1724:
1725: /* Discard jump cache entries for any tb which might potentially
1726: overlap the flushed page. */
1727: i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1728: memset (&env->tb_jmp_cache[i], 0,
1729: TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1730:
1731: i = tb_jmp_cache_hash_page(addr);
1732: memset (&env->tb_jmp_cache[i], 0,
1733: TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1734: }
1735:
1.1.1.10! root 1736: static CPUTLBEntry s_cputlb_empty_entry = {
! 1737: .addr_read = -1,
! 1738: .addr_write = -1,
! 1739: .addr_code = -1,
! 1740: .addend = -1,
! 1741: };
! 1742:
1.1 root 1743: /* NOTE: if flush_global is true, also flush global entries (not
1744: implemented yet) */
1745: void tlb_flush(CPUState *env, int flush_global)
1746: {
1747: int i;
1748:
1749: #if defined(DEBUG_TLB)
1750: printf("tlb_flush:\n");
1751: #endif
1752: /* must reset current TB so that interrupts cannot modify the
1753: links while we are modifying them */
1754: env->current_tb = NULL;
1755:
1756: for(i = 0; i < CPU_TLB_SIZE; i++) {
1.1.1.10! root 1757: int mmu_idx;
! 1758: for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
! 1759: env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
! 1760: }
1.1 root 1761: }
1762:
1.1.1.2 root 1763: memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1.1 root 1764:
1.1.1.10! root 1765: #ifdef CONFIG_KQEMU
1.1 root 1766: if (env->kqemu_enabled) {
1767: kqemu_flush(env, flush_global);
1768: }
1769: #endif
1770: tlb_flush_count++;
1771: }
1772:
1773: static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1774: {
1.1.1.6 root 1775: if (addr == (tlb_entry->addr_read &
1.1.1.2 root 1776: (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1.1.1.6 root 1777: addr == (tlb_entry->addr_write &
1.1.1.2 root 1778: (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1.1.1.6 root 1779: addr == (tlb_entry->addr_code &
1.1.1.2 root 1780: (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1.1.1.10! root 1781: *tlb_entry = s_cputlb_empty_entry;
1.1.1.2 root 1782: }
1.1 root 1783: }
1784:
1785: void tlb_flush_page(CPUState *env, target_ulong addr)
1786: {
1.1.1.2 root 1787: int i;
1.1.1.10! root 1788: int mmu_idx;
1.1 root 1789:
1790: #if defined(DEBUG_TLB)
1791: printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1792: #endif
1793: /* must reset current TB so that interrupts cannot modify the
1794: links while we are modifying them */
1795: env->current_tb = NULL;
1796:
1797: addr &= TARGET_PAGE_MASK;
1798: i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1.1.1.10! root 1799: for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
! 1800: tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1.1 root 1801:
1.1.1.7 root 1802: tlb_flush_jmp_cache(env, addr);
1.1 root 1803:
1.1.1.10! root 1804: #ifdef CONFIG_KQEMU
1.1 root 1805: if (env->kqemu_enabled) {
1806: kqemu_flush_page(env, addr);
1807: }
1808: #endif
1809: }
1810:
1811: /* update the TLBs so that writes to code in the virtual page 'addr'
1812: can be detected */
1.1.1.2 root 1813: static void tlb_protect_code(ram_addr_t ram_addr)
1.1 root 1814: {
1.1.1.6 root 1815: cpu_physical_memory_reset_dirty(ram_addr,
1.1.1.2 root 1816: ram_addr + TARGET_PAGE_SIZE,
1817: CODE_DIRTY_FLAG);
1.1 root 1818: }
1819:
1820: /* update the TLB so that writes in physical page 'phys_addr' are no longer
1821: tested for self modifying code */
1.1.1.6 root 1822: static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1.1 root 1823: target_ulong vaddr)
1824: {
1825: phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1826: }
1827:
1.1.1.6 root 1828: static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1.1 root 1829: unsigned long start, unsigned long length)
1830: {
1831: unsigned long addr;
1.1.1.2 root 1832: if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1833: addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1.1 root 1834: if ((addr - start) < length) {
1.1.1.7 root 1835: tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1.1 root 1836: }
1837: }
1838: }
1839:
1.1.1.10! root 1840: /* Note: start and end must be within the same ram block. */
1.1 root 1841: void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1842: int dirty_flags)
1843: {
1844: CPUState *env;
1845: unsigned long length, start1;
1846: int i, mask, len;
1847: uint8_t *p;
1848:
1849: start &= TARGET_PAGE_MASK;
1850: end = TARGET_PAGE_ALIGN(end);
1851:
1852: length = end - start;
1853: if (length == 0)
1854: return;
1855: len = length >> TARGET_PAGE_BITS;
1.1.1.10! root 1856: #ifdef CONFIG_KQEMU
1.1.1.2 root 1857: /* XXX: should not depend on cpu context */
1858: env = first_cpu;
1.1 root 1859: if (env->kqemu_enabled) {
1860: ram_addr_t addr;
1861: addr = start;
1862: for(i = 0; i < len; i++) {
1863: kqemu_set_notdirty(env, addr);
1864: addr += TARGET_PAGE_SIZE;
1865: }
1866: }
1867: #endif
1868: mask = ~dirty_flags;
1869: p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1870: for(i = 0; i < len; i++)
1871: p[i] &= mask;
1872:
1873: /* we modify the TLB cache so that the dirty bit will be set again
1874: when accessing the range */
1.1.1.10! root 1875: start1 = (unsigned long)qemu_get_ram_ptr(start);
! 1876: /* Chek that we don't span multiple blocks - this breaks the
! 1877: address comparisons below. */
! 1878: if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
! 1879: != (end - 1) - start) {
! 1880: abort();
! 1881: }
! 1882:
1.1.1.2 root 1883: for(env = first_cpu; env != NULL; env = env->next_cpu) {
1.1.1.10! root 1884: int mmu_idx;
! 1885: for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
! 1886: for(i = 0; i < CPU_TLB_SIZE; i++)
! 1887: tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
! 1888: start1, length);
! 1889: }
1.1.1.2 root 1890: }
1.1.1.7 root 1891: }
1.1 root 1892:
1.1.1.7 root 1893: int cpu_physical_memory_set_dirty_tracking(int enable)
1894: {
1895: in_migration = enable;
1.1.1.10! root 1896: if (kvm_enabled()) {
! 1897: return kvm_set_migration_log(enable);
! 1898: }
1.1.1.7 root 1899: return 0;
1900: }
1.1 root 1901:
1.1.1.7 root 1902: int cpu_physical_memory_get_dirty_tracking(void)
1903: {
1904: return in_migration;
1905: }
1906:
1.1.1.10! root 1907: int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
! 1908: target_phys_addr_t end_addr)
1.1.1.7 root 1909: {
1.1.1.10! root 1910: int ret = 0;
! 1911:
1.1.1.7 root 1912: if (kvm_enabled())
1.1.1.10! root 1913: ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
! 1914: return ret;
1.1 root 1915: }
1916:
1917: static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1918: {
1919: ram_addr_t ram_addr;
1.1.1.10! root 1920: void *p;
1.1 root 1921:
1.1.1.2 root 1922: if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1.1.1.10! root 1923: p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
! 1924: + tlb_entry->addend);
! 1925: ram_addr = qemu_ram_addr_from_host(p);
1.1 root 1926: if (!cpu_physical_memory_is_dirty(ram_addr)) {
1.1.1.7 root 1927: tlb_entry->addr_write |= TLB_NOTDIRTY;
1.1 root 1928: }
1929: }
1930: }
1931:
1932: /* update the TLB according to the current state of the dirty bits */
1933: void cpu_tlb_update_dirty(CPUState *env)
1934: {
1935: int i;
1.1.1.10! root 1936: int mmu_idx;
! 1937: for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
! 1938: for(i = 0; i < CPU_TLB_SIZE; i++)
! 1939: tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
! 1940: }
1.1 root 1941: }
1942:
1.1.1.7 root 1943: static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1.1 root 1944: {
1.1.1.7 root 1945: if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1946: tlb_entry->addr_write = vaddr;
1.1 root 1947: }
1948:
1.1.1.7 root 1949: /* update the TLB corresponding to virtual page vaddr
1950: so that it is no longer dirty */
1951: static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1.1 root 1952: {
1953: int i;
1.1.1.10! root 1954: int mmu_idx;
1.1 root 1955:
1.1.1.7 root 1956: vaddr &= TARGET_PAGE_MASK;
1.1 root 1957: i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1.1.1.10! root 1958: for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
! 1959: tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
1.1 root 1960: }
1961:
1962: /* add a new TLB entry. At most one entry for a given virtual address
1963: is permitted. Return 0 if OK or 2 if the page could not be mapped
1964: (can only happen in non SOFTMMU mode for I/O pages or pages
1965: conflicting with the host address space). */
1.1.1.6 root 1966: int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1967: target_phys_addr_t paddr, int prot,
1968: int mmu_idx, int is_softmmu)
1.1 root 1969: {
1970: PhysPageDesc *p;
1971: unsigned long pd;
1972: unsigned int index;
1973: target_ulong address;
1.1.1.7 root 1974: target_ulong code_address;
1.1 root 1975: target_phys_addr_t addend;
1976: int ret;
1.1.1.2 root 1977: CPUTLBEntry *te;
1.1.1.7 root 1978: CPUWatchpoint *wp;
1979: target_phys_addr_t iotlb;
1.1 root 1980:
1981: p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1982: if (!p) {
1983: pd = IO_MEM_UNASSIGNED;
1984: } else {
1985: pd = p->phys_offset;
1986: }
1987: #if defined(DEBUG_TLB)
1.1.1.6 root 1988: printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1989: vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1.1 root 1990: #endif
1991:
1992: ret = 0;
1.1.1.7 root 1993: address = vaddr;
1994: if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1995: /* IO memory case (romd handled later) */
1996: address |= TLB_MMIO;
1997: }
1.1.1.10! root 1998: addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
1.1.1.7 root 1999: if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2000: /* Normal RAM. */
2001: iotlb = pd & TARGET_PAGE_MASK;
2002: if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2003: iotlb |= IO_MEM_NOTDIRTY;
2004: else
2005: iotlb |= IO_MEM_ROM;
2006: } else {
1.1.1.10! root 2007: /* IO handlers are currently passed a physical address.
1.1.1.7 root 2008: It would be nice to pass an offset from the base address
2009: of that region. This would avoid having to special case RAM,
2010: and avoid full address decoding in every device.
2011: We can't use the high bits of pd for this because
2012: IO_MEM_ROMD uses these as a ram address. */
2013: iotlb = (pd & ~TARGET_PAGE_MASK);
2014: if (p) {
2015: iotlb += p->region_offset;
1.1 root 2016: } else {
1.1.1.7 root 2017: iotlb += paddr;
1.1 root 2018: }
1.1.1.7 root 2019: }
1.1.1.6 root 2020:
1.1.1.7 root 2021: code_address = address;
2022: /* Make accesses to pages with watchpoints go via the
2023: watchpoint trap routines. */
2024: TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2025: if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2026: iotlb = io_mem_watch + paddr;
2027: /* TODO: The memory case can be optimized by not trapping
2028: reads of pages with a write breakpoint. */
2029: address |= TLB_MMIO;
1.1.1.6 root 2030: }
1.1.1.7 root 2031: }
1.1.1.6 root 2032:
1.1.1.7 root 2033: index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2034: env->iotlb[mmu_idx][index] = iotlb - vaddr;
2035: te = &env->tlb_table[mmu_idx][index];
2036: te->addend = addend - vaddr;
2037: if (prot & PAGE_READ) {
2038: te->addr_read = address;
2039: } else {
2040: te->addr_read = -1;
1.1 root 2041: }
2042:
1.1.1.7 root 2043: if (prot & PAGE_EXEC) {
2044: te->addr_code = code_address;
2045: } else {
2046: te->addr_code = -1;
2047: }
2048: if (prot & PAGE_WRITE) {
2049: if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2050: (pd & IO_MEM_ROMD)) {
2051: /* Write access calls the I/O callback. */
2052: te->addr_write = address | TLB_MMIO;
2053: } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2054: !cpu_physical_memory_is_dirty(pd)) {
2055: te->addr_write = address | TLB_NOTDIRTY;
2056: } else {
2057: te->addr_write = address;
1.1 root 2058: }
1.1.1.7 root 2059: } else {
2060: te->addr_write = -1;
1.1 root 2061: }
2062: return ret;
2063: }
2064:
2065: #else
2066:
2067: void tlb_flush(CPUState *env, int flush_global)
2068: {
2069: }
2070:
2071: void tlb_flush_page(CPUState *env, target_ulong addr)
2072: {
2073: }
2074:
1.1.1.6 root 2075: int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2076: target_phys_addr_t paddr, int prot,
2077: int mmu_idx, int is_softmmu)
1.1 root 2078: {
2079: return 0;
2080: }
2081:
1.1.1.10! root 2082: /*
! 2083: * Walks guest process memory "regions" one by one
! 2084: * and calls callback function 'fn' for each region.
! 2085: */
! 2086: int walk_memory_regions(void *priv,
! 2087: int (*fn)(void *, unsigned long, unsigned long, unsigned long))
1.1 root 2088: {
2089: unsigned long start, end;
1.1.1.10! root 2090: PageDesc *p = NULL;
1.1 root 2091: int i, j, prot, prot1;
1.1.1.10! root 2092: int rc = 0;
1.1 root 2093:
1.1.1.10! root 2094: start = end = -1;
1.1 root 2095: prot = 0;
1.1.1.10! root 2096:
! 2097: for (i = 0; i <= L1_SIZE; i++) {
! 2098: p = (i < L1_SIZE) ? l1_map[i] : NULL;
! 2099: for (j = 0; j < L2_SIZE; j++) {
! 2100: prot1 = (p == NULL) ? 0 : p[j].flags;
! 2101: /*
! 2102: * "region" is one continuous chunk of memory
! 2103: * that has same protection flags set.
! 2104: */
1.1 root 2105: if (prot1 != prot) {
2106: end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2107: if (start != -1) {
1.1.1.10! root 2108: rc = (*fn)(priv, start, end, prot);
! 2109: /* callback can stop iteration by returning != 0 */
! 2110: if (rc != 0)
! 2111: return (rc);
1.1 root 2112: }
2113: if (prot1 != 0)
2114: start = end;
2115: else
2116: start = -1;
2117: prot = prot1;
2118: }
1.1.1.10! root 2119: if (p == NULL)
1.1 root 2120: break;
2121: }
2122: }
1.1.1.10! root 2123: return (rc);
! 2124: }
! 2125:
! 2126: static int dump_region(void *priv, unsigned long start,
! 2127: unsigned long end, unsigned long prot)
! 2128: {
! 2129: FILE *f = (FILE *)priv;
! 2130:
! 2131: (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
! 2132: start, end, end - start,
! 2133: ((prot & PAGE_READ) ? 'r' : '-'),
! 2134: ((prot & PAGE_WRITE) ? 'w' : '-'),
! 2135: ((prot & PAGE_EXEC) ? 'x' : '-'));
! 2136:
! 2137: return (0);
! 2138: }
! 2139:
! 2140: /* dump memory mappings */
! 2141: void page_dump(FILE *f)
! 2142: {
! 2143: (void) fprintf(f, "%-8s %-8s %-8s %s\n",
! 2144: "start", "end", "size", "prot");
! 2145: walk_memory_regions(f, dump_region);
1.1 root 2146: }
2147:
1.1.1.3 root 2148: int page_get_flags(target_ulong address)
1.1 root 2149: {
2150: PageDesc *p;
2151:
2152: p = page_find(address >> TARGET_PAGE_BITS);
2153: if (!p)
2154: return 0;
2155: return p->flags;
2156: }
2157:
2158: /* modify the flags of a page and invalidate the code if
1.1.1.10! root 2159: necessary. The flag PAGE_WRITE_ORG is positioned automatically
1.1 root 2160: depending on PAGE_WRITE */
1.1.1.3 root 2161: void page_set_flags(target_ulong start, target_ulong end, int flags)
1.1 root 2162: {
2163: PageDesc *p;
1.1.1.3 root 2164: target_ulong addr;
1.1 root 2165:
1.1.1.7 root 2166: /* mmap_lock should already be held. */
1.1 root 2167: start = start & TARGET_PAGE_MASK;
2168: end = TARGET_PAGE_ALIGN(end);
2169: if (flags & PAGE_WRITE)
2170: flags |= PAGE_WRITE_ORG;
2171: for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2172: p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1.1.1.7 root 2173: /* We may be called for host regions that are outside guest
2174: address space. */
2175: if (!p)
2176: return;
1.1 root 2177: /* if the write protection is set, then we invalidate the code
2178: inside */
1.1.1.6 root 2179: if (!(p->flags & PAGE_WRITE) &&
1.1 root 2180: (flags & PAGE_WRITE) &&
2181: p->first_tb) {
2182: tb_invalidate_phys_page(addr, 0, NULL);
2183: }
2184: p->flags = flags;
2185: }
2186: }
2187:
1.1.1.6 root 2188: int page_check_range(target_ulong start, target_ulong len, int flags)
2189: {
2190: PageDesc *p;
2191: target_ulong end;
2192: target_ulong addr;
2193:
1.1.1.7 root 2194: if (start + len < start)
2195: /* we've wrapped around */
2196: return -1;
2197:
1.1.1.6 root 2198: end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2199: start = start & TARGET_PAGE_MASK;
2200:
2201: for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2202: p = page_find(addr >> TARGET_PAGE_BITS);
2203: if( !p )
2204: return -1;
2205: if( !(p->flags & PAGE_VALID) )
2206: return -1;
2207:
2208: if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2209: return -1;
2210: if (flags & PAGE_WRITE) {
2211: if (!(p->flags & PAGE_WRITE_ORG))
2212: return -1;
2213: /* unprotect the page if it was put read-only because it
2214: contains translated code */
2215: if (!(p->flags & PAGE_WRITE)) {
2216: if (!page_unprotect(addr, 0, NULL))
2217: return -1;
2218: }
2219: return 0;
2220: }
2221: }
2222: return 0;
2223: }
2224:
1.1 root 2225: /* called from signal handler: invalidate the code and unprotect the
1.1.1.10! root 2226: page. Return TRUE if the fault was successfully handled. */
1.1.1.3 root 2227: int page_unprotect(target_ulong address, unsigned long pc, void *puc)
1.1 root 2228: {
2229: unsigned int page_index, prot, pindex;
2230: PageDesc *p, *p1;
1.1.1.3 root 2231: target_ulong host_start, host_end, addr;
1.1 root 2232:
1.1.1.7 root 2233: /* Technically this isn't safe inside a signal handler. However we
2234: know this only ever happens in a synchronous SEGV handler, so in
2235: practice it seems to be ok. */
2236: mmap_lock();
2237:
1.1 root 2238: host_start = address & qemu_host_page_mask;
2239: page_index = host_start >> TARGET_PAGE_BITS;
2240: p1 = page_find(page_index);
1.1.1.7 root 2241: if (!p1) {
2242: mmap_unlock();
1.1 root 2243: return 0;
1.1.1.7 root 2244: }
1.1 root 2245: host_end = host_start + qemu_host_page_size;
2246: p = p1;
2247: prot = 0;
2248: for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2249: prot |= p->flags;
2250: p++;
2251: }
2252: /* if the page was really writable, then we change its
2253: protection back to writable */
2254: if (prot & PAGE_WRITE_ORG) {
2255: pindex = (address - host_start) >> TARGET_PAGE_BITS;
2256: if (!(p1[pindex].flags & PAGE_WRITE)) {
1.1.1.6 root 2257: mprotect((void *)g2h(host_start), qemu_host_page_size,
1.1 root 2258: (prot & PAGE_BITS) | PAGE_WRITE);
2259: p1[pindex].flags |= PAGE_WRITE;
2260: /* and since the content will be modified, we must invalidate
2261: the corresponding translated code. */
2262: tb_invalidate_phys_page(address, pc, puc);
2263: #ifdef DEBUG_TB_CHECK
2264: tb_invalidate_check(address);
2265: #endif
1.1.1.7 root 2266: mmap_unlock();
1.1 root 2267: return 1;
2268: }
2269: }
1.1.1.7 root 2270: mmap_unlock();
1.1 root 2271: return 0;
2272: }
2273:
1.1.1.2 root 2274: static inline void tlb_set_dirty(CPUState *env,
2275: unsigned long addr, target_ulong vaddr)
1.1 root 2276: {
2277: }
2278: #endif /* defined(CONFIG_USER_ONLY) */
2279:
1.1.1.7 root 2280: #if !defined(CONFIG_USER_ONLY)
2281:
1.1.1.6 root 2282: static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1.1.1.7 root 2283: ram_addr_t memory, ram_addr_t region_offset);
2284: static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2285: ram_addr_t orig_memory, ram_addr_t region_offset);
1.1.1.6 root 2286: #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2287: need_subpage) \
2288: do { \
2289: if (addr > start_addr) \
2290: start_addr2 = 0; \
2291: else { \
2292: start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2293: if (start_addr2 > 0) \
2294: need_subpage = 1; \
2295: } \
2296: \
2297: if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2298: end_addr2 = TARGET_PAGE_SIZE - 1; \
2299: else { \
2300: end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2301: if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2302: need_subpage = 1; \
2303: } \
2304: } while (0)
2305:
1.1 root 2306: /* register physical memory. 'size' must be a multiple of the target
2307: page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
1.1.1.7 root 2308: io memory page. The address used when calling the IO function is
2309: the offset from the start of the region, plus region_offset. Both
1.1.1.10! root 2310: start_addr and region_offset are rounded down to a page boundary
1.1.1.7 root 2311: before calculating this offset. This should not be a problem unless
2312: the low bits of start_addr and region_offset differ. */
2313: void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2314: ram_addr_t size,
2315: ram_addr_t phys_offset,
2316: ram_addr_t region_offset)
1.1 root 2317: {
2318: target_phys_addr_t addr, end_addr;
2319: PhysPageDesc *p;
1.1.1.4 root 2320: CPUState *env;
1.1.1.7 root 2321: ram_addr_t orig_size = size;
1.1.1.6 root 2322: void *subpage;
1.1 root 2323:
1.1.1.10! root 2324: #ifdef CONFIG_KQEMU
1.1.1.7 root 2325: /* XXX: should not depend on cpu context */
2326: env = first_cpu;
2327: if (env->kqemu_enabled) {
2328: kqemu_set_phys_mem(start_addr, size, phys_offset);
2329: }
2330: #endif
2331: if (kvm_enabled())
2332: kvm_set_phys_mem(start_addr, size, phys_offset);
2333:
2334: if (phys_offset == IO_MEM_UNASSIGNED) {
2335: region_offset = start_addr;
2336: }
2337: region_offset &= TARGET_PAGE_MASK;
1.1 root 2338: size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
1.1.1.6 root 2339: end_addr = start_addr + (target_phys_addr_t)size;
1.1 root 2340: for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
1.1.1.6 root 2341: p = phys_page_find(addr >> TARGET_PAGE_BITS);
2342: if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
1.1.1.7 root 2343: ram_addr_t orig_memory = p->phys_offset;
1.1.1.6 root 2344: target_phys_addr_t start_addr2, end_addr2;
2345: int need_subpage = 0;
2346:
2347: CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2348: need_subpage);
2349: if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2350: if (!(orig_memory & IO_MEM_SUBPAGE)) {
2351: subpage = subpage_init((addr & TARGET_PAGE_MASK),
1.1.1.7 root 2352: &p->phys_offset, orig_memory,
2353: p->region_offset);
1.1.1.6 root 2354: } else {
2355: subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2356: >> IO_MEM_SHIFT];
2357: }
1.1.1.7 root 2358: subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2359: region_offset);
2360: p->region_offset = 0;
1.1.1.6 root 2361: } else {
2362: p->phys_offset = phys_offset;
2363: if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2364: (phys_offset & IO_MEM_ROMD))
2365: phys_offset += TARGET_PAGE_SIZE;
2366: }
2367: } else {
2368: p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2369: p->phys_offset = phys_offset;
1.1.1.7 root 2370: p->region_offset = region_offset;
1.1.1.6 root 2371: if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
1.1.1.7 root 2372: (phys_offset & IO_MEM_ROMD)) {
1.1.1.6 root 2373: phys_offset += TARGET_PAGE_SIZE;
1.1.1.7 root 2374: } else {
1.1.1.6 root 2375: target_phys_addr_t start_addr2, end_addr2;
2376: int need_subpage = 0;
2377:
2378: CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2379: end_addr2, need_subpage);
2380:
2381: if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2382: subpage = subpage_init((addr & TARGET_PAGE_MASK),
1.1.1.7 root 2383: &p->phys_offset, IO_MEM_UNASSIGNED,
2384: addr & TARGET_PAGE_MASK);
1.1.1.6 root 2385: subpage_register(subpage, start_addr2, end_addr2,
1.1.1.7 root 2386: phys_offset, region_offset);
2387: p->region_offset = 0;
1.1.1.6 root 2388: }
2389: }
2390: }
1.1.1.7 root 2391: region_offset += TARGET_PAGE_SIZE;
1.1 root 2392: }
1.1.1.6 root 2393:
1.1.1.4 root 2394: /* since each CPU stores ram addresses in its TLB cache, we must
2395: reset the modified entries */
2396: /* XXX: slow ! */
2397: for(env = first_cpu; env != NULL; env = env->next_cpu) {
2398: tlb_flush(env, 1);
2399: }
1.1 root 2400: }
2401:
1.1.1.5 root 2402: /* XXX: temporary until new memory mapping API */
1.1.1.7 root 2403: ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
1.1.1.5 root 2404: {
2405: PhysPageDesc *p;
2406:
2407: p = phys_page_find(addr >> TARGET_PAGE_BITS);
2408: if (!p)
2409: return IO_MEM_UNASSIGNED;
2410: return p->phys_offset;
2411: }
2412:
1.1.1.7 root 2413: void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2414: {
2415: if (kvm_enabled())
2416: kvm_coalesce_mmio_region(addr, size);
2417: }
2418:
2419: void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2420: {
2421: if (kvm_enabled())
2422: kvm_uncoalesce_mmio_region(addr, size);
2423: }
2424:
1.1.1.10! root 2425: #ifdef CONFIG_KQEMU
1.1.1.6 root 2426: /* XXX: better than nothing */
1.1.1.10! root 2427: static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
1.1.1.6 root 2428: {
2429: ram_addr_t addr;
1.1.1.10! root 2430: if ((last_ram_offset + size) > kqemu_phys_ram_size) {
1.1.1.7 root 2431: fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
1.1.1.10! root 2432: (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
1.1.1.6 root 2433: abort();
2434: }
1.1.1.10! root 2435: addr = last_ram_offset;
! 2436: last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
! 2437: return addr;
! 2438: }
! 2439: #endif
! 2440:
! 2441: ram_addr_t qemu_ram_alloc(ram_addr_t size)
! 2442: {
! 2443: RAMBlock *new_block;
! 2444:
! 2445: #ifdef CONFIG_KQEMU
! 2446: if (kqemu_phys_ram_base) {
! 2447: return kqemu_ram_alloc(size);
! 2448: }
! 2449: #endif
! 2450:
! 2451: size = TARGET_PAGE_ALIGN(size);
! 2452: new_block = qemu_malloc(sizeof(*new_block));
! 2453:
! 2454: new_block->host = qemu_vmalloc(size);
! 2455: new_block->offset = last_ram_offset;
! 2456: new_block->length = size;
! 2457:
! 2458: new_block->next = ram_blocks;
! 2459: ram_blocks = new_block;
! 2460:
! 2461: phys_ram_dirty = qemu_realloc(phys_ram_dirty,
! 2462: (last_ram_offset + size) >> TARGET_PAGE_BITS);
! 2463: memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
! 2464: 0xff, size >> TARGET_PAGE_BITS);
! 2465:
! 2466: last_ram_offset += size;
1.1.1.9 root 2467:
2468: if (kvm_enabled())
1.1.1.10! root 2469: kvm_setup_guest_memory(new_block->host, size);
1.1.1.9 root 2470:
1.1.1.10! root 2471: return new_block->offset;
1.1.1.6 root 2472: }
2473:
2474: void qemu_ram_free(ram_addr_t addr)
2475: {
1.1.1.10! root 2476: /* TODO: implement this. */
! 2477: }
! 2478:
! 2479: /* Return a host pointer to ram allocated with qemu_ram_alloc.
! 2480: With the exception of the softmmu code in this file, this should
! 2481: only be used for local memory (e.g. video ram) that the device owns,
! 2482: and knows it isn't going to access beyond the end of the block.
! 2483:
! 2484: It should not be used for general purpose DMA.
! 2485: Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
! 2486: */
! 2487: void *qemu_get_ram_ptr(ram_addr_t addr)
! 2488: {
! 2489: RAMBlock *prev;
! 2490: RAMBlock **prevp;
! 2491: RAMBlock *block;
! 2492:
! 2493: #ifdef CONFIG_KQEMU
! 2494: if (kqemu_phys_ram_base) {
! 2495: return kqemu_phys_ram_base + addr;
! 2496: }
! 2497: #endif
! 2498:
! 2499: prev = NULL;
! 2500: prevp = &ram_blocks;
! 2501: block = ram_blocks;
! 2502: while (block && (block->offset > addr
! 2503: || block->offset + block->length <= addr)) {
! 2504: if (prev)
! 2505: prevp = &prev->next;
! 2506: prev = block;
! 2507: block = block->next;
! 2508: }
! 2509: if (!block) {
! 2510: fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
! 2511: abort();
! 2512: }
! 2513: /* Move this entry to to start of the list. */
! 2514: if (prev) {
! 2515: prev->next = block->next;
! 2516: block->next = *prevp;
! 2517: *prevp = block;
! 2518: }
! 2519: return block->host + (addr - block->offset);
! 2520: }
! 2521:
! 2522: /* Some of the softmmu routines need to translate from a host pointer
! 2523: (typically a TLB entry) back to a ram offset. */
! 2524: ram_addr_t qemu_ram_addr_from_host(void *ptr)
! 2525: {
! 2526: RAMBlock *prev;
! 2527: RAMBlock **prevp;
! 2528: RAMBlock *block;
! 2529: uint8_t *host = ptr;
! 2530:
! 2531: #ifdef CONFIG_KQEMU
! 2532: if (kqemu_phys_ram_base) {
! 2533: return host - kqemu_phys_ram_base;
! 2534: }
! 2535: #endif
! 2536:
! 2537: prev = NULL;
! 2538: prevp = &ram_blocks;
! 2539: block = ram_blocks;
! 2540: while (block && (block->host > host
! 2541: || block->host + block->length <= host)) {
! 2542: if (prev)
! 2543: prevp = &prev->next;
! 2544: prev = block;
! 2545: block = block->next;
! 2546: }
! 2547: if (!block) {
! 2548: fprintf(stderr, "Bad ram pointer %p\n", ptr);
! 2549: abort();
! 2550: }
! 2551: return block->offset + (host - block->host);
1.1.1.6 root 2552: }
2553:
1.1 root 2554: static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2555: {
1.1.1.5 root 2556: #ifdef DEBUG_UNASSIGNED
1.1.1.6 root 2557: printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2558: #endif
1.1.1.7 root 2559: #if defined(TARGET_SPARC)
2560: do_unassigned_access(addr, 0, 0, 0, 1);
2561: #endif
2562: return 0;
2563: }
2564:
2565: static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2566: {
2567: #ifdef DEBUG_UNASSIGNED
2568: printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2569: #endif
2570: #if defined(TARGET_SPARC)
2571: do_unassigned_access(addr, 0, 0, 0, 2);
2572: #endif
2573: return 0;
2574: }
2575:
2576: static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2577: {
2578: #ifdef DEBUG_UNASSIGNED
2579: printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2580: #endif
2581: #if defined(TARGET_SPARC)
2582: do_unassigned_access(addr, 0, 0, 0, 4);
1.1.1.5 root 2583: #endif
1.1 root 2584: return 0;
2585: }
2586:
2587: static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2588: {
1.1.1.5 root 2589: #ifdef DEBUG_UNASSIGNED
1.1.1.6 root 2590: printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2591: #endif
1.1.1.7 root 2592: #if defined(TARGET_SPARC)
2593: do_unassigned_access(addr, 1, 0, 0, 1);
2594: #endif
2595: }
2596:
2597: static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2598: {
2599: #ifdef DEBUG_UNASSIGNED
2600: printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2601: #endif
2602: #if defined(TARGET_SPARC)
2603: do_unassigned_access(addr, 1, 0, 0, 2);
2604: #endif
2605: }
2606:
2607: static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2608: {
2609: #ifdef DEBUG_UNASSIGNED
2610: printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2611: #endif
2612: #if defined(TARGET_SPARC)
2613: do_unassigned_access(addr, 1, 0, 0, 4);
1.1.1.5 root 2614: #endif
1.1 root 2615: }
2616:
2617: static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2618: unassigned_mem_readb,
1.1.1.7 root 2619: unassigned_mem_readw,
2620: unassigned_mem_readl,
1.1 root 2621: };
2622:
2623: static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2624: unassigned_mem_writeb,
1.1.1.7 root 2625: unassigned_mem_writew,
2626: unassigned_mem_writel,
1.1 root 2627: };
2628:
1.1.1.7 root 2629: static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2630: uint32_t val)
1.1 root 2631: {
2632: int dirty_flags;
2633: dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2634: if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2635: #if !defined(CONFIG_USER_ONLY)
2636: tb_invalidate_phys_page_fast(ram_addr, 1);
2637: dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2638: #endif
2639: }
1.1.1.10! root 2640: stb_p(qemu_get_ram_ptr(ram_addr), val);
! 2641: #ifdef CONFIG_KQEMU
1.1.1.3 root 2642: if (cpu_single_env->kqemu_enabled &&
2643: (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2644: kqemu_modify_page(cpu_single_env, ram_addr);
2645: #endif
1.1 root 2646: dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2647: phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2648: /* we remove the notdirty callback only if the code has been
2649: flushed */
2650: if (dirty_flags == 0xff)
1.1.1.7 root 2651: tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1.1 root 2652: }
2653:
1.1.1.7 root 2654: static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2655: uint32_t val)
1.1 root 2656: {
2657: int dirty_flags;
2658: dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2659: if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2660: #if !defined(CONFIG_USER_ONLY)
2661: tb_invalidate_phys_page_fast(ram_addr, 2);
2662: dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2663: #endif
2664: }
1.1.1.10! root 2665: stw_p(qemu_get_ram_ptr(ram_addr), val);
! 2666: #ifdef CONFIG_KQEMU
1.1.1.3 root 2667: if (cpu_single_env->kqemu_enabled &&
2668: (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2669: kqemu_modify_page(cpu_single_env, ram_addr);
2670: #endif
1.1 root 2671: dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2672: phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2673: /* we remove the notdirty callback only if the code has been
2674: flushed */
2675: if (dirty_flags == 0xff)
1.1.1.7 root 2676: tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1.1 root 2677: }
2678:
1.1.1.7 root 2679: static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2680: uint32_t val)
1.1 root 2681: {
2682: int dirty_flags;
2683: dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2684: if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2685: #if !defined(CONFIG_USER_ONLY)
2686: tb_invalidate_phys_page_fast(ram_addr, 4);
2687: dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2688: #endif
2689: }
1.1.1.10! root 2690: stl_p(qemu_get_ram_ptr(ram_addr), val);
! 2691: #ifdef CONFIG_KQEMU
1.1.1.3 root 2692: if (cpu_single_env->kqemu_enabled &&
2693: (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2694: kqemu_modify_page(cpu_single_env, ram_addr);
2695: #endif
1.1 root 2696: dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2697: phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2698: /* we remove the notdirty callback only if the code has been
2699: flushed */
2700: if (dirty_flags == 0xff)
1.1.1.7 root 2701: tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1.1 root 2702: }
2703:
2704: static CPUReadMemoryFunc *error_mem_read[3] = {
2705: NULL, /* never used */
2706: NULL, /* never used */
2707: NULL, /* never used */
2708: };
2709:
2710: static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2711: notdirty_mem_writeb,
2712: notdirty_mem_writew,
2713: notdirty_mem_writel,
2714: };
2715:
1.1.1.7 root 2716: /* Generate a debug exception if a watchpoint has been hit. */
2717: static void check_watchpoint(int offset, int len_mask, int flags)
2718: {
2719: CPUState *env = cpu_single_env;
2720: target_ulong pc, cs_base;
2721: TranslationBlock *tb;
2722: target_ulong vaddr;
2723: CPUWatchpoint *wp;
2724: int cpu_flags;
2725:
2726: if (env->watchpoint_hit) {
2727: /* We re-entered the check after replacing the TB. Now raise
2728: * the debug interrupt so that is will trigger after the
2729: * current instruction. */
2730: cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2731: return;
2732: }
2733: vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2734: TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2735: if ((vaddr == (wp->vaddr & len_mask) ||
2736: (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2737: wp->flags |= BP_WATCHPOINT_HIT;
2738: if (!env->watchpoint_hit) {
2739: env->watchpoint_hit = wp;
2740: tb = tb_find_pc(env->mem_io_pc);
2741: if (!tb) {
2742: cpu_abort(env, "check_watchpoint: could not find TB for "
2743: "pc=%p", (void *)env->mem_io_pc);
2744: }
2745: cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2746: tb_phys_invalidate(tb, -1);
2747: if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2748: env->exception_index = EXCP_DEBUG;
2749: } else {
2750: cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2751: tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2752: }
2753: cpu_resume_from_signal(env, NULL);
2754: }
2755: } else {
2756: wp->flags &= ~BP_WATCHPOINT_HIT;
2757: }
2758: }
2759: }
2760:
1.1.1.6 root 2761: /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2762: so these check for a hit then pass through to the normal out-of-line
2763: phys routines. */
2764: static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2765: {
1.1.1.7 root 2766: check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
1.1.1.6 root 2767: return ldub_phys(addr);
2768: }
2769:
2770: static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2771: {
1.1.1.7 root 2772: check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
1.1.1.6 root 2773: return lduw_phys(addr);
2774: }
2775:
2776: static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2777: {
1.1.1.7 root 2778: check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
1.1.1.6 root 2779: return ldl_phys(addr);
2780: }
2781:
2782: static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2783: uint32_t val)
2784: {
1.1.1.7 root 2785: check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
1.1.1.6 root 2786: stb_phys(addr, val);
2787: }
2788:
2789: static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2790: uint32_t val)
2791: {
1.1.1.7 root 2792: check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
1.1.1.6 root 2793: stw_phys(addr, val);
2794: }
2795:
2796: static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2797: uint32_t val)
2798: {
1.1.1.7 root 2799: check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
1.1.1.6 root 2800: stl_phys(addr, val);
2801: }
2802:
2803: static CPUReadMemoryFunc *watch_mem_read[3] = {
2804: watch_mem_readb,
2805: watch_mem_readw,
2806: watch_mem_readl,
2807: };
2808:
2809: static CPUWriteMemoryFunc *watch_mem_write[3] = {
2810: watch_mem_writeb,
2811: watch_mem_writew,
2812: watch_mem_writel,
2813: };
2814:
2815: static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2816: unsigned int len)
2817: {
2818: uint32_t ret;
2819: unsigned int idx;
2820:
1.1.1.7 root 2821: idx = SUBPAGE_IDX(addr);
1.1.1.6 root 2822: #if defined(DEBUG_SUBPAGE)
2823: printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2824: mmio, len, addr, idx);
2825: #endif
1.1.1.7 root 2826: ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2827: addr + mmio->region_offset[idx][0][len]);
1.1.1.6 root 2828:
2829: return ret;
2830: }
2831:
2832: static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2833: uint32_t value, unsigned int len)
2834: {
2835: unsigned int idx;
2836:
1.1.1.7 root 2837: idx = SUBPAGE_IDX(addr);
1.1.1.6 root 2838: #if defined(DEBUG_SUBPAGE)
2839: printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2840: mmio, len, addr, idx, value);
2841: #endif
1.1.1.7 root 2842: (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2843: addr + mmio->region_offset[idx][1][len],
2844: value);
1.1.1.6 root 2845: }
2846:
2847: static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2848: {
2849: #if defined(DEBUG_SUBPAGE)
2850: printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2851: #endif
2852:
2853: return subpage_readlen(opaque, addr, 0);
2854: }
2855:
2856: static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2857: uint32_t value)
2858: {
2859: #if defined(DEBUG_SUBPAGE)
2860: printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2861: #endif
2862: subpage_writelen(opaque, addr, value, 0);
2863: }
2864:
2865: static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2866: {
2867: #if defined(DEBUG_SUBPAGE)
2868: printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2869: #endif
2870:
2871: return subpage_readlen(opaque, addr, 1);
2872: }
2873:
2874: static void subpage_writew (void *opaque, target_phys_addr_t addr,
2875: uint32_t value)
2876: {
2877: #if defined(DEBUG_SUBPAGE)
2878: printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2879: #endif
2880: subpage_writelen(opaque, addr, value, 1);
2881: }
2882:
2883: static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2884: {
2885: #if defined(DEBUG_SUBPAGE)
2886: printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2887: #endif
2888:
2889: return subpage_readlen(opaque, addr, 2);
2890: }
2891:
2892: static void subpage_writel (void *opaque,
2893: target_phys_addr_t addr, uint32_t value)
2894: {
2895: #if defined(DEBUG_SUBPAGE)
2896: printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2897: #endif
2898: subpage_writelen(opaque, addr, value, 2);
2899: }
2900:
2901: static CPUReadMemoryFunc *subpage_read[] = {
2902: &subpage_readb,
2903: &subpage_readw,
2904: &subpage_readl,
2905: };
2906:
2907: static CPUWriteMemoryFunc *subpage_write[] = {
2908: &subpage_writeb,
2909: &subpage_writew,
2910: &subpage_writel,
2911: };
2912:
2913: static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1.1.1.7 root 2914: ram_addr_t memory, ram_addr_t region_offset)
1.1.1.6 root 2915: {
2916: int idx, eidx;
2917: unsigned int i;
2918:
2919: if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2920: return -1;
2921: idx = SUBPAGE_IDX(start);
2922: eidx = SUBPAGE_IDX(end);
2923: #if defined(DEBUG_SUBPAGE)
1.1.1.10! root 2924: printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1.1.1.6 root 2925: mmio, start, end, idx, eidx, memory);
2926: #endif
2927: memory >>= IO_MEM_SHIFT;
2928: for (; idx <= eidx; idx++) {
2929: for (i = 0; i < 4; i++) {
2930: if (io_mem_read[memory][i]) {
2931: mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2932: mmio->opaque[idx][0][i] = io_mem_opaque[memory];
1.1.1.7 root 2933: mmio->region_offset[idx][0][i] = region_offset;
1.1.1.6 root 2934: }
2935: if (io_mem_write[memory][i]) {
2936: mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2937: mmio->opaque[idx][1][i] = io_mem_opaque[memory];
1.1.1.7 root 2938: mmio->region_offset[idx][1][i] = region_offset;
1.1.1.6 root 2939: }
2940: }
2941: }
2942:
2943: return 0;
2944: }
2945:
1.1.1.7 root 2946: static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2947: ram_addr_t orig_memory, ram_addr_t region_offset)
1.1.1.6 root 2948: {
2949: subpage_t *mmio;
2950: int subpage_memory;
2951:
2952: mmio = qemu_mallocz(sizeof(subpage_t));
1.1.1.7 root 2953:
2954: mmio->base = base;
1.1.1.10! root 2955: subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
1.1.1.6 root 2956: #if defined(DEBUG_SUBPAGE)
1.1.1.7 root 2957: printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2958: mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1.1.1.6 root 2959: #endif
1.1.1.7 root 2960: *phys = subpage_memory | IO_MEM_SUBPAGE;
2961: subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2962: region_offset);
1.1.1.6 root 2963:
2964: return mmio;
2965: }
2966:
1.1.1.7 root 2967: static int get_free_io_mem_idx(void)
2968: {
2969: int i;
2970:
2971: for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2972: if (!io_mem_used[i]) {
2973: io_mem_used[i] = 1;
2974: return i;
2975: }
2976:
2977: return -1;
2978: }
2979:
1.1 root 2980: /* mem_read and mem_write are arrays of functions containing the
2981: function to access byte (index 0), word (index 1) and dword (index
1.1.1.10! root 2982: 2). Functions can be omitted with a NULL function pointer.
1.1.1.6 root 2983: If io_index is non zero, the corresponding io zone is
2984: modified. If it is zero, a new io zone is allocated. The return
2985: value can be used with cpu_register_physical_memory(). (-1) is
2986: returned if error. */
1.1.1.10! root 2987: static int cpu_register_io_memory_fixed(int io_index,
! 2988: CPUReadMemoryFunc **mem_read,
! 2989: CPUWriteMemoryFunc **mem_write,
! 2990: void *opaque)
1.1 root 2991: {
1.1.1.6 root 2992: int i, subwidth = 0;
1.1 root 2993:
2994: if (io_index <= 0) {
1.1.1.7 root 2995: io_index = get_free_io_mem_idx();
2996: if (io_index == -1)
2997: return io_index;
1.1 root 2998: } else {
1.1.1.10! root 2999: io_index >>= IO_MEM_SHIFT;
1.1 root 3000: if (io_index >= IO_MEM_NB_ENTRIES)
3001: return -1;
3002: }
1.1.1.2 root 3003:
1.1 root 3004: for(i = 0;i < 3; i++) {
1.1.1.6 root 3005: if (!mem_read[i] || !mem_write[i])
3006: subwidth = IO_MEM_SUBWIDTH;
1.1 root 3007: io_mem_read[io_index][i] = mem_read[i];
3008: io_mem_write[io_index][i] = mem_write[i];
3009: }
3010: io_mem_opaque[io_index] = opaque;
1.1.1.6 root 3011: return (io_index << IO_MEM_SHIFT) | subwidth;
1.1 root 3012: }
3013:
1.1.1.10! root 3014: int cpu_register_io_memory(CPUReadMemoryFunc **mem_read,
! 3015: CPUWriteMemoryFunc **mem_write,
! 3016: void *opaque)
! 3017: {
! 3018: return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
! 3019: }
! 3020:
1.1.1.7 root 3021: void cpu_unregister_io_memory(int io_table_address)
3022: {
3023: int i;
3024: int io_index = io_table_address >> IO_MEM_SHIFT;
3025:
3026: for (i=0;i < 3; i++) {
3027: io_mem_read[io_index][i] = unassigned_mem_read[i];
3028: io_mem_write[io_index][i] = unassigned_mem_write[i];
3029: }
3030: io_mem_opaque[io_index] = NULL;
3031: io_mem_used[io_index] = 0;
3032: }
3033:
1.1.1.10! root 3034: static void io_mem_init(void)
1.1 root 3035: {
1.1.1.10! root 3036: int i;
1.1 root 3037:
1.1.1.10! root 3038: cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
! 3039: cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
! 3040: cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
! 3041: for (i=0; i<5; i++)
! 3042: io_mem_used[i] = 1;
! 3043:
! 3044: io_mem_watch = cpu_register_io_memory(watch_mem_read,
! 3045: watch_mem_write, NULL);
! 3046: #ifdef CONFIG_KQEMU
! 3047: if (kqemu_phys_ram_base) {
! 3048: /* alloc dirty bits array */
! 3049: phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
! 3050: memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
! 3051: }
! 3052: #endif
1.1 root 3053: }
3054:
1.1.1.7 root 3055: #endif /* !defined(CONFIG_USER_ONLY) */
3056:
1.1 root 3057: /* physical memory access (slow version, mainly for debug) */
3058: #if defined(CONFIG_USER_ONLY)
1.1.1.6 root 3059: void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
1.1 root 3060: int len, int is_write)
3061: {
3062: int l, flags;
3063: target_ulong page;
1.1.1.3 root 3064: void * p;
1.1 root 3065:
3066: while (len > 0) {
3067: page = addr & TARGET_PAGE_MASK;
3068: l = (page + TARGET_PAGE_SIZE) - addr;
3069: if (l > len)
3070: l = len;
3071: flags = page_get_flags(page);
3072: if (!(flags & PAGE_VALID))
3073: return;
3074: if (is_write) {
3075: if (!(flags & PAGE_WRITE))
3076: return;
1.1.1.6 root 3077: /* XXX: this code should not depend on lock_user */
1.1.1.7 root 3078: if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1.1.1.6 root 3079: /* FIXME - should this return an error rather than just fail? */
3080: return;
1.1.1.7 root 3081: memcpy(p, buf, l);
3082: unlock_user(p, addr, l);
1.1 root 3083: } else {
3084: if (!(flags & PAGE_READ))
3085: return;
1.1.1.6 root 3086: /* XXX: this code should not depend on lock_user */
1.1.1.7 root 3087: if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1.1.1.6 root 3088: /* FIXME - should this return an error rather than just fail? */
3089: return;
1.1.1.7 root 3090: memcpy(buf, p, l);
1.1.1.3 root 3091: unlock_user(p, addr, 0);
1.1 root 3092: }
3093: len -= l;
3094: buf += l;
3095: addr += l;
3096: }
3097: }
3098:
3099: #else
1.1.1.6 root 3100: void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
1.1 root 3101: int len, int is_write)
3102: {
3103: int l, io_index;
3104: uint8_t *ptr;
3105: uint32_t val;
3106: target_phys_addr_t page;
3107: unsigned long pd;
3108: PhysPageDesc *p;
1.1.1.6 root 3109:
1.1 root 3110: while (len > 0) {
3111: page = addr & TARGET_PAGE_MASK;
3112: l = (page + TARGET_PAGE_SIZE) - addr;
3113: if (l > len)
3114: l = len;
3115: p = phys_page_find(page >> TARGET_PAGE_BITS);
3116: if (!p) {
3117: pd = IO_MEM_UNASSIGNED;
3118: } else {
3119: pd = p->phys_offset;
3120: }
1.1.1.6 root 3121:
1.1 root 3122: if (is_write) {
3123: if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
1.1.1.7 root 3124: target_phys_addr_t addr1 = addr;
1.1 root 3125: io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
1.1.1.7 root 3126: if (p)
3127: addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1.1.1.2 root 3128: /* XXX: could force cpu_single_env to NULL to avoid
3129: potential bugs */
1.1.1.7 root 3130: if (l >= 4 && ((addr1 & 3) == 0)) {
1.1 root 3131: /* 32 bit write access */
3132: val = ldl_p(buf);
1.1.1.7 root 3133: io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
1.1 root 3134: l = 4;
1.1.1.7 root 3135: } else if (l >= 2 && ((addr1 & 1) == 0)) {
1.1 root 3136: /* 16 bit write access */
3137: val = lduw_p(buf);
1.1.1.7 root 3138: io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
1.1 root 3139: l = 2;
3140: } else {
3141: /* 8 bit write access */
3142: val = ldub_p(buf);
1.1.1.7 root 3143: io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
1.1 root 3144: l = 1;
3145: }
3146: } else {
3147: unsigned long addr1;
3148: addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3149: /* RAM case */
1.1.1.10! root 3150: ptr = qemu_get_ram_ptr(addr1);
1.1 root 3151: memcpy(ptr, buf, l);
3152: if (!cpu_physical_memory_is_dirty(addr1)) {
3153: /* invalidate code */
3154: tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3155: /* set dirty bit */
1.1.1.6 root 3156: phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
1.1 root 3157: (0xff & ~CODE_DIRTY_FLAG);
3158: }
3159: }
3160: } else {
1.1.1.6 root 3161: if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
1.1.1.4 root 3162: !(pd & IO_MEM_ROMD)) {
1.1.1.7 root 3163: target_phys_addr_t addr1 = addr;
1.1 root 3164: /* I/O case */
3165: io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
1.1.1.7 root 3166: if (p)
3167: addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3168: if (l >= 4 && ((addr1 & 3) == 0)) {
1.1 root 3169: /* 32 bit read access */
1.1.1.7 root 3170: val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
1.1 root 3171: stl_p(buf, val);
3172: l = 4;
1.1.1.7 root 3173: } else if (l >= 2 && ((addr1 & 1) == 0)) {
1.1 root 3174: /* 16 bit read access */
1.1.1.7 root 3175: val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
1.1 root 3176: stw_p(buf, val);
3177: l = 2;
3178: } else {
3179: /* 8 bit read access */
1.1.1.7 root 3180: val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
1.1 root 3181: stb_p(buf, val);
3182: l = 1;
3183: }
3184: } else {
3185: /* RAM case */
1.1.1.10! root 3186: ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
1.1 root 3187: (addr & ~TARGET_PAGE_MASK);
3188: memcpy(buf, ptr, l);
3189: }
3190: }
3191: len -= l;
3192: buf += l;
3193: addr += l;
3194: }
3195: }
3196:
1.1.1.3 root 3197: /* used for ROM loading : can write in RAM and ROM */
1.1.1.6 root 3198: void cpu_physical_memory_write_rom(target_phys_addr_t addr,
1.1.1.3 root 3199: const uint8_t *buf, int len)
3200: {
3201: int l;
3202: uint8_t *ptr;
3203: target_phys_addr_t page;
3204: unsigned long pd;
3205: PhysPageDesc *p;
1.1.1.6 root 3206:
1.1.1.3 root 3207: while (len > 0) {
3208: page = addr & TARGET_PAGE_MASK;
3209: l = (page + TARGET_PAGE_SIZE) - addr;
3210: if (l > len)
3211: l = len;
3212: p = phys_page_find(page >> TARGET_PAGE_BITS);
3213: if (!p) {
3214: pd = IO_MEM_UNASSIGNED;
3215: } else {
3216: pd = p->phys_offset;
3217: }
1.1.1.6 root 3218:
1.1.1.3 root 3219: if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
1.1.1.4 root 3220: (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3221: !(pd & IO_MEM_ROMD)) {
1.1.1.3 root 3222: /* do nothing */
3223: } else {
3224: unsigned long addr1;
3225: addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3226: /* ROM/RAM case */
1.1.1.10! root 3227: ptr = qemu_get_ram_ptr(addr1);
1.1.1.3 root 3228: memcpy(ptr, buf, l);
3229: }
3230: len -= l;
3231: buf += l;
3232: addr += l;
3233: }
3234: }
3235:
1.1.1.7 root 3236: typedef struct {
3237: void *buffer;
3238: target_phys_addr_t addr;
3239: target_phys_addr_t len;
3240: } BounceBuffer;
3241:
3242: static BounceBuffer bounce;
3243:
3244: typedef struct MapClient {
3245: void *opaque;
3246: void (*callback)(void *opaque);
3247: LIST_ENTRY(MapClient) link;
3248: } MapClient;
3249:
3250: static LIST_HEAD(map_client_list, MapClient) map_client_list
3251: = LIST_HEAD_INITIALIZER(map_client_list);
3252:
3253: void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3254: {
3255: MapClient *client = qemu_malloc(sizeof(*client));
3256:
3257: client->opaque = opaque;
3258: client->callback = callback;
3259: LIST_INSERT_HEAD(&map_client_list, client, link);
3260: return client;
3261: }
3262:
3263: void cpu_unregister_map_client(void *_client)
3264: {
3265: MapClient *client = (MapClient *)_client;
3266:
3267: LIST_REMOVE(client, link);
1.1.1.10! root 3268: qemu_free(client);
1.1.1.7 root 3269: }
3270:
3271: static void cpu_notify_map_clients(void)
3272: {
3273: MapClient *client;
3274:
3275: while (!LIST_EMPTY(&map_client_list)) {
3276: client = LIST_FIRST(&map_client_list);
3277: client->callback(client->opaque);
1.1.1.10! root 3278: cpu_unregister_map_client(client);
1.1.1.7 root 3279: }
3280: }
3281:
3282: /* Map a physical memory region into a host virtual address.
3283: * May map a subset of the requested range, given by and returned in *plen.
3284: * May return NULL if resources needed to perform the mapping are exhausted.
3285: * Use only for reads OR writes - not for read-modify-write operations.
3286: * Use cpu_register_map_client() to know when retrying the map operation is
3287: * likely to succeed.
3288: */
3289: void *cpu_physical_memory_map(target_phys_addr_t addr,
3290: target_phys_addr_t *plen,
3291: int is_write)
3292: {
3293: target_phys_addr_t len = *plen;
3294: target_phys_addr_t done = 0;
3295: int l;
3296: uint8_t *ret = NULL;
3297: uint8_t *ptr;
3298: target_phys_addr_t page;
3299: unsigned long pd;
3300: PhysPageDesc *p;
3301: unsigned long addr1;
3302:
3303: while (len > 0) {
3304: page = addr & TARGET_PAGE_MASK;
3305: l = (page + TARGET_PAGE_SIZE) - addr;
3306: if (l > len)
3307: l = len;
3308: p = phys_page_find(page >> TARGET_PAGE_BITS);
3309: if (!p) {
3310: pd = IO_MEM_UNASSIGNED;
3311: } else {
3312: pd = p->phys_offset;
3313: }
3314:
3315: if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3316: if (done || bounce.buffer) {
3317: break;
3318: }
3319: bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3320: bounce.addr = addr;
3321: bounce.len = l;
3322: if (!is_write) {
3323: cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3324: }
3325: ptr = bounce.buffer;
3326: } else {
3327: addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
1.1.1.10! root 3328: ptr = qemu_get_ram_ptr(addr1);
1.1.1.7 root 3329: }
3330: if (!done) {
3331: ret = ptr;
3332: } else if (ret + done != ptr) {
3333: break;
3334: }
3335:
3336: len -= l;
3337: addr += l;
3338: done += l;
3339: }
3340: *plen = done;
3341: return ret;
3342: }
3343:
3344: /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3345: * Will also mark the memory as dirty if is_write == 1. access_len gives
3346: * the amount of memory that was actually read or written by the caller.
3347: */
3348: void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3349: int is_write, target_phys_addr_t access_len)
3350: {
3351: if (buffer != bounce.buffer) {
3352: if (is_write) {
1.1.1.10! root 3353: ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
1.1.1.7 root 3354: while (access_len) {
3355: unsigned l;
3356: l = TARGET_PAGE_SIZE;
3357: if (l > access_len)
3358: l = access_len;
3359: if (!cpu_physical_memory_is_dirty(addr1)) {
3360: /* invalidate code */
3361: tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3362: /* set dirty bit */
3363: phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3364: (0xff & ~CODE_DIRTY_FLAG);
3365: }
3366: addr1 += l;
3367: access_len -= l;
3368: }
3369: }
3370: return;
3371: }
3372: if (is_write) {
3373: cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3374: }
3375: qemu_free(bounce.buffer);
3376: bounce.buffer = NULL;
3377: cpu_notify_map_clients();
3378: }
1.1.1.3 root 3379:
1.1 root 3380: /* warning: addr must be aligned */
3381: uint32_t ldl_phys(target_phys_addr_t addr)
3382: {
3383: int io_index;
3384: uint8_t *ptr;
3385: uint32_t val;
3386: unsigned long pd;
3387: PhysPageDesc *p;
3388:
3389: p = phys_page_find(addr >> TARGET_PAGE_BITS);
3390: if (!p) {
3391: pd = IO_MEM_UNASSIGNED;
3392: } else {
3393: pd = p->phys_offset;
3394: }
1.1.1.6 root 3395:
3396: if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
1.1.1.4 root 3397: !(pd & IO_MEM_ROMD)) {
1.1 root 3398: /* I/O case */
3399: io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
1.1.1.7 root 3400: if (p)
3401: addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1.1 root 3402: val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3403: } else {
3404: /* RAM case */
1.1.1.10! root 3405: ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
1.1 root 3406: (addr & ~TARGET_PAGE_MASK);
3407: val = ldl_p(ptr);
3408: }
3409: return val;
3410: }
3411:
1.1.1.2 root 3412: /* warning: addr must be aligned */
3413: uint64_t ldq_phys(target_phys_addr_t addr)
3414: {
3415: int io_index;
3416: uint8_t *ptr;
3417: uint64_t val;
3418: unsigned long pd;
3419: PhysPageDesc *p;
3420:
3421: p = phys_page_find(addr >> TARGET_PAGE_BITS);
3422: if (!p) {
3423: pd = IO_MEM_UNASSIGNED;
3424: } else {
3425: pd = p->phys_offset;
3426: }
1.1.1.6 root 3427:
1.1.1.4 root 3428: if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3429: !(pd & IO_MEM_ROMD)) {
1.1.1.2 root 3430: /* I/O case */
3431: io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
1.1.1.7 root 3432: if (p)
3433: addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1.1.1.2 root 3434: #ifdef TARGET_WORDS_BIGENDIAN
3435: val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3436: val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3437: #else
3438: val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3439: val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3440: #endif
3441: } else {
3442: /* RAM case */
1.1.1.10! root 3443: ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
1.1.1.2 root 3444: (addr & ~TARGET_PAGE_MASK);
3445: val = ldq_p(ptr);
3446: }
3447: return val;
3448: }
3449:
3450: /* XXX: optimize */
3451: uint32_t ldub_phys(target_phys_addr_t addr)
3452: {
3453: uint8_t val;
3454: cpu_physical_memory_read(addr, &val, 1);
3455: return val;
3456: }
3457:
3458: /* XXX: optimize */
3459: uint32_t lduw_phys(target_phys_addr_t addr)
3460: {
3461: uint16_t val;
3462: cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3463: return tswap16(val);
3464: }
3465:
1.1 root 3466: /* warning: addr must be aligned. The ram page is not masked as dirty
3467: and the code inside is not invalidated. It is useful if the dirty
3468: bits are used to track modified PTEs */
3469: void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3470: {
3471: int io_index;
3472: uint8_t *ptr;
3473: unsigned long pd;
3474: PhysPageDesc *p;
3475:
3476: p = phys_page_find(addr >> TARGET_PAGE_BITS);
3477: if (!p) {
3478: pd = IO_MEM_UNASSIGNED;
3479: } else {
3480: pd = p->phys_offset;
3481: }
1.1.1.6 root 3482:
1.1 root 3483: if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3484: io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
1.1.1.7 root 3485: if (p)
3486: addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1.1 root 3487: io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3488: } else {
1.1.1.7 root 3489: unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
1.1.1.10! root 3490: ptr = qemu_get_ram_ptr(addr1);
1.1 root 3491: stl_p(ptr, val);
1.1.1.7 root 3492:
3493: if (unlikely(in_migration)) {
3494: if (!cpu_physical_memory_is_dirty(addr1)) {
3495: /* invalidate code */
3496: tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3497: /* set dirty bit */
3498: phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3499: (0xff & ~CODE_DIRTY_FLAG);
3500: }
3501: }
1.1 root 3502: }
3503: }
3504:
1.1.1.6 root 3505: void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3506: {
3507: int io_index;
3508: uint8_t *ptr;
3509: unsigned long pd;
3510: PhysPageDesc *p;
3511:
3512: p = phys_page_find(addr >> TARGET_PAGE_BITS);
3513: if (!p) {
3514: pd = IO_MEM_UNASSIGNED;
3515: } else {
3516: pd = p->phys_offset;
3517: }
3518:
3519: if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3520: io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
1.1.1.7 root 3521: if (p)
3522: addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1.1.1.6 root 3523: #ifdef TARGET_WORDS_BIGENDIAN
3524: io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3525: io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3526: #else
3527: io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3528: io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3529: #endif
3530: } else {
1.1.1.10! root 3531: ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
1.1.1.6 root 3532: (addr & ~TARGET_PAGE_MASK);
3533: stq_p(ptr, val);
3534: }
3535: }
3536:
1.1 root 3537: /* warning: addr must be aligned */
3538: void stl_phys(target_phys_addr_t addr, uint32_t val)
3539: {
3540: int io_index;
3541: uint8_t *ptr;
3542: unsigned long pd;
3543: PhysPageDesc *p;
3544:
3545: p = phys_page_find(addr >> TARGET_PAGE_BITS);
3546: if (!p) {
3547: pd = IO_MEM_UNASSIGNED;
3548: } else {
3549: pd = p->phys_offset;
3550: }
1.1.1.6 root 3551:
1.1 root 3552: if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3553: io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
1.1.1.7 root 3554: if (p)
3555: addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1.1 root 3556: io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3557: } else {
3558: unsigned long addr1;
3559: addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3560: /* RAM case */
1.1.1.10! root 3561: ptr = qemu_get_ram_ptr(addr1);
1.1 root 3562: stl_p(ptr, val);
3563: if (!cpu_physical_memory_is_dirty(addr1)) {
3564: /* invalidate code */
3565: tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3566: /* set dirty bit */
3567: phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3568: (0xff & ~CODE_DIRTY_FLAG);
3569: }
3570: }
3571: }
3572:
1.1.1.2 root 3573: /* XXX: optimize */
3574: void stb_phys(target_phys_addr_t addr, uint32_t val)
3575: {
3576: uint8_t v = val;
3577: cpu_physical_memory_write(addr, &v, 1);
3578: }
3579:
3580: /* XXX: optimize */
3581: void stw_phys(target_phys_addr_t addr, uint32_t val)
3582: {
3583: uint16_t v = tswap16(val);
3584: cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3585: }
3586:
3587: /* XXX: optimize */
3588: void stq_phys(target_phys_addr_t addr, uint64_t val)
3589: {
3590: val = tswap64(val);
3591: cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3592: }
3593:
1.1 root 3594: #endif
3595:
1.1.1.10! root 3596: /* virtual memory access for debug (includes writing to ROM) */
1.1.1.6 root 3597: int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
1.1 root 3598: uint8_t *buf, int len, int is_write)
3599: {
3600: int l;
1.1.1.6 root 3601: target_phys_addr_t phys_addr;
3602: target_ulong page;
1.1 root 3603:
3604: while (len > 0) {
3605: page = addr & TARGET_PAGE_MASK;
3606: phys_addr = cpu_get_phys_page_debug(env, page);
3607: /* if no physical page mapped, return an error */
3608: if (phys_addr == -1)
3609: return -1;
3610: l = (page + TARGET_PAGE_SIZE) - addr;
3611: if (l > len)
3612: l = len;
1.1.1.10! root 3613: phys_addr += (addr & ~TARGET_PAGE_MASK);
! 3614: #if !defined(CONFIG_USER_ONLY)
! 3615: if (is_write)
! 3616: cpu_physical_memory_write_rom(phys_addr, buf, l);
! 3617: else
! 3618: #endif
! 3619: cpu_physical_memory_rw(phys_addr, buf, l, is_write);
1.1 root 3620: len -= l;
3621: buf += l;
3622: addr += l;
3623: }
3624: return 0;
3625: }
3626:
1.1.1.7 root 3627: /* in deterministic execution mode, instructions doing device I/Os
3628: must be at the end of the TB */
3629: void cpu_io_recompile(CPUState *env, void *retaddr)
3630: {
3631: TranslationBlock *tb;
3632: uint32_t n, cflags;
3633: target_ulong pc, cs_base;
3634: uint64_t flags;
3635:
3636: tb = tb_find_pc((unsigned long)retaddr);
3637: if (!tb) {
3638: cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3639: retaddr);
3640: }
3641: n = env->icount_decr.u16.low + tb->icount;
3642: cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3643: /* Calculate how many instructions had been executed before the fault
3644: occurred. */
3645: n = n - env->icount_decr.u16.low;
3646: /* Generate a new TB ending on the I/O insn. */
3647: n++;
3648: /* On MIPS and SH, delay slot instructions can only be restarted if
3649: they were already the first instruction in the TB. If this is not
3650: the first instruction in a TB then re-execute the preceding
3651: branch. */
3652: #if defined(TARGET_MIPS)
3653: if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3654: env->active_tc.PC -= 4;
3655: env->icount_decr.u16.low++;
3656: env->hflags &= ~MIPS_HFLAG_BMASK;
3657: }
3658: #elif defined(TARGET_SH4)
3659: if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3660: && n > 1) {
3661: env->pc -= 2;
3662: env->icount_decr.u16.low++;
3663: env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3664: }
3665: #endif
3666: /* This should never happen. */
3667: if (n > CF_COUNT_MASK)
3668: cpu_abort(env, "TB too big during recompile");
3669:
3670: cflags = n | CF_LAST_IO;
3671: pc = tb->pc;
3672: cs_base = tb->cs_base;
3673: flags = tb->flags;
3674: tb_phys_invalidate(tb, -1);
3675: /* FIXME: In theory this could raise an exception. In practice
3676: we have already translated the block once so it's probably ok. */
3677: tb_gen_code(env, pc, cs_base, flags, cflags);
3678: /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3679: the first in the TB) then we end up generating a whole new TB and
3680: repeating the fault, which is horribly inefficient.
3681: Better would be to execute just this insn uncached, or generate a
3682: second new TB. */
3683: cpu_resume_from_signal(env, NULL);
3684: }
3685:
1.1 root 3686: void dump_exec_info(FILE *f,
3687: int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3688: {
3689: int i, target_code_size, max_target_code_size;
3690: int direct_jmp_count, direct_jmp2_count, cross_page;
3691: TranslationBlock *tb;
1.1.1.6 root 3692:
1.1 root 3693: target_code_size = 0;
3694: max_target_code_size = 0;
3695: cross_page = 0;
3696: direct_jmp_count = 0;
3697: direct_jmp2_count = 0;
3698: for(i = 0; i < nb_tbs; i++) {
3699: tb = &tbs[i];
3700: target_code_size += tb->size;
3701: if (tb->size > max_target_code_size)
3702: max_target_code_size = tb->size;
3703: if (tb->page_addr[1] != -1)
3704: cross_page++;
3705: if (tb->tb_next_offset[0] != 0xffff) {
3706: direct_jmp_count++;
3707: if (tb->tb_next_offset[1] != 0xffff) {
3708: direct_jmp2_count++;
3709: }
3710: }
3711: }
3712: /* XXX: avoid using doubles ? */
1.1.1.7 root 3713: cpu_fprintf(f, "Translation buffer state:\n");
3714: cpu_fprintf(f, "gen code size %ld/%ld\n",
3715: code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3716: cpu_fprintf(f, "TB count %d/%d\n",
3717: nb_tbs, code_gen_max_blocks);
1.1.1.6 root 3718: cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1.1 root 3719: nb_tbs ? target_code_size / nb_tbs : 0,
3720: max_target_code_size);
1.1.1.6 root 3721: cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
1.1 root 3722: nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3723: target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
1.1.1.6 root 3724: cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3725: cross_page,
1.1 root 3726: nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3727: cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1.1.1.6 root 3728: direct_jmp_count,
1.1 root 3729: nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3730: direct_jmp2_count,
3731: nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
1.1.1.7 root 3732: cpu_fprintf(f, "\nStatistics:\n");
1.1 root 3733: cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3734: cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3735: cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1.1.1.7 root 3736: tcg_dump_info(f, cpu_fprintf);
1.1 root 3737: }
3738:
1.1.1.6 root 3739: #if !defined(CONFIG_USER_ONLY)
1.1 root 3740:
3741: #define MMUSUFFIX _cmmu
3742: #define GETPC() NULL
3743: #define env cpu_single_env
3744: #define SOFTMMU_CODE_ACCESS
3745:
3746: #define SHIFT 0
3747: #include "softmmu_template.h"
3748:
3749: #define SHIFT 1
3750: #include "softmmu_template.h"
3751:
3752: #define SHIFT 2
3753: #include "softmmu_template.h"
3754:
3755: #define SHIFT 3
3756: #include "softmmu_template.h"
3757:
3758: #undef env
3759:
3760: #endif
unix.superglobalmegacorp.com