Annotation of qemu/exec.c, revision 1.1.1.5

1.1       root        1: /*
                      2:  *  virtual page mapping and translated block handling
                      3:  * 
                      4:  *  Copyright (c) 2003 Fabrice Bellard
                      5:  *
                      6:  * This library is free software; you can redistribute it and/or
                      7:  * modify it under the terms of the GNU Lesser General Public
                      8:  * License as published by the Free Software Foundation; either
                      9:  * version 2 of the License, or (at your option) any later version.
                     10:  *
                     11:  * This library is distributed in the hope that it will be useful,
                     12:  * but WITHOUT ANY WARRANTY; without even the implied warranty of
                     13:  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
                     14:  * Lesser General Public License for more details.
                     15:  *
                     16:  * You should have received a copy of the GNU Lesser General Public
                     17:  * License along with this library; if not, write to the Free Software
                     18:  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
                     19:  */
                     20: #include "config.h"
                     21: #ifdef _WIN32
                     22: #include <windows.h>
                     23: #else
                     24: #include <sys/types.h>
                     25: #include <sys/mman.h>
                     26: #endif
                     27: #include <stdlib.h>
                     28: #include <stdio.h>
                     29: #include <stdarg.h>
                     30: #include <string.h>
                     31: #include <errno.h>
                     32: #include <unistd.h>
                     33: #include <inttypes.h>
                     34: 
                     35: #include "cpu.h"
                     36: #include "exec-all.h"
1.1.1.3   root       37: #if defined(CONFIG_USER_ONLY)
                     38: #include <qemu.h>
                     39: #endif
1.1       root       40: 
                     41: //#define DEBUG_TB_INVALIDATE
                     42: //#define DEBUG_FLUSH
                     43: //#define DEBUG_TLB
1.1.1.5 ! root       44: //#define DEBUG_UNASSIGNED
1.1       root       45: 
                     46: /* make various TB consistency checks */
                     47: //#define DEBUG_TB_CHECK 
                     48: //#define DEBUG_TLB_CHECK 
                     49: 
1.1.1.3   root       50: #if !defined(CONFIG_USER_ONLY)
                     51: /* TB consistency checks only implemented for usermode emulation.  */
                     52: #undef DEBUG_TB_CHECK
                     53: #endif
                     54: 
1.1       root       55: /* threshold to flush the translated code buffer */
                     56: #define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
                     57: 
                     58: #define SMC_BITMAP_USE_THRESHOLD 10
                     59: 
                     60: #define MMAP_AREA_START        0x00000000
                     61: #define MMAP_AREA_END          0xa8000000
                     62: 
                     63: #if defined(TARGET_SPARC64)
                     64: #define TARGET_PHYS_ADDR_SPACE_BITS 41
                     65: #elif defined(TARGET_PPC64)
                     66: #define TARGET_PHYS_ADDR_SPACE_BITS 42
                     67: #else
                     68: /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
                     69: #define TARGET_PHYS_ADDR_SPACE_BITS 32
                     70: #endif
                     71: 
                     72: TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
                     73: TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
                     74: int nb_tbs;
                     75: /* any access to the tbs or the page table must use this lock */
                     76: spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
                     77: 
                     78: uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
                     79: uint8_t *code_gen_ptr;
                     80: 
                     81: int phys_ram_size;
                     82: int phys_ram_fd;
                     83: uint8_t *phys_ram_base;
                     84: uint8_t *phys_ram_dirty;
                     85: 
1.1.1.2   root       86: CPUState *first_cpu;
                     87: /* current CPU in the current thread. It is only valid inside
                     88:    cpu_exec() */
                     89: CPUState *cpu_single_env; 
                     90: 
1.1       root       91: typedef struct PageDesc {
                     92:     /* list of TBs intersecting this ram page */
                     93:     TranslationBlock *first_tb;
                     94:     /* in order to optimize self modifying code, we count the number
                     95:        of lookups we do to a given page to use a bitmap */
                     96:     unsigned int code_write_count;
                     97:     uint8_t *code_bitmap;
                     98: #if defined(CONFIG_USER_ONLY)
                     99:     unsigned long flags;
                    100: #endif
                    101: } PageDesc;
                    102: 
                    103: typedef struct PhysPageDesc {
                    104:     /* offset in host memory of the page + io_index in the low 12 bits */
                    105:     uint32_t phys_offset;
                    106: } PhysPageDesc;
                    107: 
                    108: #define L2_BITS 10
                    109: #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
                    110: 
                    111: #define L1_SIZE (1 << L1_BITS)
                    112: #define L2_SIZE (1 << L2_BITS)
                    113: 
                    114: static void io_mem_init(void);
                    115: 
                    116: unsigned long qemu_real_host_page_size;
                    117: unsigned long qemu_host_page_bits;
                    118: unsigned long qemu_host_page_size;
                    119: unsigned long qemu_host_page_mask;
                    120: 
                    121: /* XXX: for system emulation, it could just be an array */
                    122: static PageDesc *l1_map[L1_SIZE];
                    123: PhysPageDesc **l1_phys_map;
                    124: 
                    125: /* io memory support */
                    126: CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
                    127: CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
                    128: void *io_mem_opaque[IO_MEM_NB_ENTRIES];
                    129: static int io_mem_nb;
                    130: 
                    131: /* log support */
                    132: char *logfilename = "/tmp/qemu.log";
                    133: FILE *logfile;
                    134: int loglevel;
                    135: 
                    136: /* statistics */
                    137: static int tlb_flush_count;
                    138: static int tb_flush_count;
                    139: static int tb_phys_invalidate_count;
                    140: 
                    141: static void page_init(void)
                    142: {
                    143:     /* NOTE: we can always suppose that qemu_host_page_size >=
                    144:        TARGET_PAGE_SIZE */
                    145: #ifdef _WIN32
                    146:     {
                    147:         SYSTEM_INFO system_info;
                    148:         DWORD old_protect;
                    149:         
                    150:         GetSystemInfo(&system_info);
                    151:         qemu_real_host_page_size = system_info.dwPageSize;
                    152:         
                    153:         VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
                    154:                        PAGE_EXECUTE_READWRITE, &old_protect);
                    155:     }
                    156: #else
                    157:     qemu_real_host_page_size = getpagesize();
                    158:     {
                    159:         unsigned long start, end;
                    160: 
                    161:         start = (unsigned long)code_gen_buffer;
                    162:         start &= ~(qemu_real_host_page_size - 1);
                    163:         
                    164:         end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
                    165:         end += qemu_real_host_page_size - 1;
                    166:         end &= ~(qemu_real_host_page_size - 1);
                    167:         
                    168:         mprotect((void *)start, end - start, 
                    169:                  PROT_READ | PROT_WRITE | PROT_EXEC);
                    170:     }
                    171: #endif
                    172: 
                    173:     if (qemu_host_page_size == 0)
                    174:         qemu_host_page_size = qemu_real_host_page_size;
                    175:     if (qemu_host_page_size < TARGET_PAGE_SIZE)
                    176:         qemu_host_page_size = TARGET_PAGE_SIZE;
                    177:     qemu_host_page_bits = 0;
                    178:     while ((1 << qemu_host_page_bits) < qemu_host_page_size)
                    179:         qemu_host_page_bits++;
                    180:     qemu_host_page_mask = ~(qemu_host_page_size - 1);
                    181:     l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
                    182:     memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
                    183: }
                    184: 
                    185: static inline PageDesc *page_find_alloc(unsigned int index)
                    186: {
                    187:     PageDesc **lp, *p;
                    188: 
                    189:     lp = &l1_map[index >> L2_BITS];
                    190:     p = *lp;
                    191:     if (!p) {
                    192:         /* allocate if not found */
                    193:         p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
                    194:         memset(p, 0, sizeof(PageDesc) * L2_SIZE);
                    195:         *lp = p;
                    196:     }
                    197:     return p + (index & (L2_SIZE - 1));
                    198: }
                    199: 
                    200: static inline PageDesc *page_find(unsigned int index)
                    201: {
                    202:     PageDesc *p;
                    203: 
                    204:     p = l1_map[index >> L2_BITS];
                    205:     if (!p)
                    206:         return 0;
                    207:     return p + (index & (L2_SIZE - 1));
                    208: }
                    209: 
                    210: static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
                    211: {
                    212:     void **lp, **p;
1.1.1.3   root      213:     PhysPageDesc *pd;
1.1       root      214: 
                    215:     p = (void **)l1_phys_map;
                    216: #if TARGET_PHYS_ADDR_SPACE_BITS > 32
                    217: 
                    218: #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
                    219: #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
                    220: #endif
                    221:     lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
                    222:     p = *lp;
                    223:     if (!p) {
                    224:         /* allocate if not found */
                    225:         if (!alloc)
                    226:             return NULL;
                    227:         p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
                    228:         memset(p, 0, sizeof(void *) * L1_SIZE);
                    229:         *lp = p;
                    230:     }
                    231: #endif
                    232:     lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
1.1.1.3   root      233:     pd = *lp;
                    234:     if (!pd) {
                    235:         int i;
1.1       root      236:         /* allocate if not found */
                    237:         if (!alloc)
                    238:             return NULL;
1.1.1.3   root      239:         pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
                    240:         *lp = pd;
                    241:         for (i = 0; i < L2_SIZE; i++)
                    242:           pd[i].phys_offset = IO_MEM_UNASSIGNED;
1.1       root      243:     }
1.1.1.3   root      244:     return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
1.1       root      245: }
                    246: 
                    247: static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
                    248: {
                    249:     return phys_page_find_alloc(index, 0);
                    250: }
                    251: 
                    252: #if !defined(CONFIG_USER_ONLY)
1.1.1.2   root      253: static void tlb_protect_code(ram_addr_t ram_addr);
1.1       root      254: static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, 
                    255:                                     target_ulong vaddr);
                    256: #endif
                    257: 
1.1.1.2   root      258: void cpu_exec_init(CPUState *env)
1.1       root      259: {
1.1.1.2   root      260:     CPUState **penv;
                    261:     int cpu_index;
1.1       root      262: 
                    263:     if (!code_gen_ptr) {
                    264:         code_gen_ptr = code_gen_buffer;
                    265:         page_init();
                    266:         io_mem_init();
                    267:     }
1.1.1.2   root      268:     env->next_cpu = NULL;
                    269:     penv = &first_cpu;
                    270:     cpu_index = 0;
                    271:     while (*penv != NULL) {
                    272:         penv = (CPUState **)&(*penv)->next_cpu;
                    273:         cpu_index++;
                    274:     }
                    275:     env->cpu_index = cpu_index;
                    276:     *penv = env;
1.1       root      277: }
                    278: 
                    279: static inline void invalidate_page_bitmap(PageDesc *p)
                    280: {
                    281:     if (p->code_bitmap) {
                    282:         qemu_free(p->code_bitmap);
                    283:         p->code_bitmap = NULL;
                    284:     }
                    285:     p->code_write_count = 0;
                    286: }
                    287: 
                    288: /* set to NULL all the 'first_tb' fields in all PageDescs */
                    289: static void page_flush_tb(void)
                    290: {
                    291:     int i, j;
                    292:     PageDesc *p;
                    293: 
                    294:     for(i = 0; i < L1_SIZE; i++) {
                    295:         p = l1_map[i];
                    296:         if (p) {
                    297:             for(j = 0; j < L2_SIZE; j++) {
                    298:                 p->first_tb = NULL;
                    299:                 invalidate_page_bitmap(p);
                    300:                 p++;
                    301:             }
                    302:         }
                    303:     }
                    304: }
                    305: 
                    306: /* flush all the translation blocks */
                    307: /* XXX: tb_flush is currently not thread safe */
1.1.1.2   root      308: void tb_flush(CPUState *env1)
1.1       root      309: {
1.1.1.2   root      310:     CPUState *env;
1.1       root      311: #if defined(DEBUG_FLUSH)
                    312:     printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n", 
                    313:            code_gen_ptr - code_gen_buffer, 
                    314:            nb_tbs, 
                    315:            nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
                    316: #endif
                    317:     nb_tbs = 0;
1.1.1.2   root      318:     
                    319:     for(env = first_cpu; env != NULL; env = env->next_cpu) {
                    320:         memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
                    321:     }
1.1       root      322: 
                    323:     memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
                    324:     page_flush_tb();
                    325: 
                    326:     code_gen_ptr = code_gen_buffer;
                    327:     /* XXX: flush processor icache at this point if cache flush is
                    328:        expensive */
                    329:     tb_flush_count++;
                    330: }
                    331: 
                    332: #ifdef DEBUG_TB_CHECK
                    333: 
                    334: static void tb_invalidate_check(unsigned long address)
                    335: {
                    336:     TranslationBlock *tb;
                    337:     int i;
                    338:     address &= TARGET_PAGE_MASK;
1.1.1.3   root      339:     for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
                    340:         for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
1.1       root      341:             if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
                    342:                   address >= tb->pc + tb->size)) {
                    343:                 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
1.1.1.3   root      344:                        address, (long)tb->pc, tb->size);
1.1       root      345:             }
                    346:         }
                    347:     }
                    348: }
                    349: 
                    350: /* verify that all the pages have correct rights for code */
                    351: static void tb_page_check(void)
                    352: {
                    353:     TranslationBlock *tb;
                    354:     int i, flags1, flags2;
                    355:     
1.1.1.3   root      356:     for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
                    357:         for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
1.1       root      358:             flags1 = page_get_flags(tb->pc);
                    359:             flags2 = page_get_flags(tb->pc + tb->size - 1);
                    360:             if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
                    361:                 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1.1.1.3   root      362:                        (long)tb->pc, tb->size, flags1, flags2);
1.1       root      363:             }
                    364:         }
                    365:     }
                    366: }
                    367: 
                    368: void tb_jmp_check(TranslationBlock *tb)
                    369: {
                    370:     TranslationBlock *tb1;
                    371:     unsigned int n1;
                    372: 
                    373:     /* suppress any remaining jumps to this TB */
                    374:     tb1 = tb->jmp_first;
                    375:     for(;;) {
                    376:         n1 = (long)tb1 & 3;
                    377:         tb1 = (TranslationBlock *)((long)tb1 & ~3);
                    378:         if (n1 == 2)
                    379:             break;
                    380:         tb1 = tb1->jmp_next[n1];
                    381:     }
                    382:     /* check end of list */
                    383:     if (tb1 != tb) {
                    384:         printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
                    385:     }
                    386: }
                    387: 
                    388: #endif
                    389: 
                    390: /* invalidate one TB */
                    391: static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
                    392:                              int next_offset)
                    393: {
                    394:     TranslationBlock *tb1;
                    395:     for(;;) {
                    396:         tb1 = *ptb;
                    397:         if (tb1 == tb) {
                    398:             *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
                    399:             break;
                    400:         }
                    401:         ptb = (TranslationBlock **)((char *)tb1 + next_offset);
                    402:     }
                    403: }
                    404: 
                    405: static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
                    406: {
                    407:     TranslationBlock *tb1;
                    408:     unsigned int n1;
                    409: 
                    410:     for(;;) {
                    411:         tb1 = *ptb;
                    412:         n1 = (long)tb1 & 3;
                    413:         tb1 = (TranslationBlock *)((long)tb1 & ~3);
                    414:         if (tb1 == tb) {
                    415:             *ptb = tb1->page_next[n1];
                    416:             break;
                    417:         }
                    418:         ptb = &tb1->page_next[n1];
                    419:     }
                    420: }
                    421: 
                    422: static inline void tb_jmp_remove(TranslationBlock *tb, int n)
                    423: {
                    424:     TranslationBlock *tb1, **ptb;
                    425:     unsigned int n1;
                    426: 
                    427:     ptb = &tb->jmp_next[n];
                    428:     tb1 = *ptb;
                    429:     if (tb1) {
                    430:         /* find tb(n) in circular list */
                    431:         for(;;) {
                    432:             tb1 = *ptb;
                    433:             n1 = (long)tb1 & 3;
                    434:             tb1 = (TranslationBlock *)((long)tb1 & ~3);
                    435:             if (n1 == n && tb1 == tb)
                    436:                 break;
                    437:             if (n1 == 2) {
                    438:                 ptb = &tb1->jmp_first;
                    439:             } else {
                    440:                 ptb = &tb1->jmp_next[n1];
                    441:             }
                    442:         }
                    443:         /* now we can suppress tb(n) from the list */
                    444:         *ptb = tb->jmp_next[n];
                    445: 
                    446:         tb->jmp_next[n] = NULL;
                    447:     }
                    448: }
                    449: 
                    450: /* reset the jump entry 'n' of a TB so that it is not chained to
                    451:    another TB */
                    452: static inline void tb_reset_jump(TranslationBlock *tb, int n)
                    453: {
                    454:     tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
                    455: }
                    456: 
1.1.1.2   root      457: static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
1.1       root      458: {
1.1.1.2   root      459:     CPUState *env;
                    460:     PageDesc *p;
1.1       root      461:     unsigned int h, n1;
1.1.1.2   root      462:     target_ulong phys_pc;
                    463:     TranslationBlock *tb1, *tb2;
1.1       root      464:     
1.1.1.2   root      465:     /* remove the TB from the hash list */
                    466:     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
                    467:     h = tb_phys_hash_func(phys_pc);
                    468:     tb_remove(&tb_phys_hash[h], tb, 
                    469:               offsetof(TranslationBlock, phys_hash_next));
                    470: 
                    471:     /* remove the TB from the page list */
                    472:     if (tb->page_addr[0] != page_addr) {
                    473:         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
                    474:         tb_page_remove(&p->first_tb, tb);
                    475:         invalidate_page_bitmap(p);
                    476:     }
                    477:     if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
                    478:         p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
                    479:         tb_page_remove(&p->first_tb, tb);
                    480:         invalidate_page_bitmap(p);
                    481:     }
                    482: 
1.1       root      483:     tb_invalidated_flag = 1;
                    484: 
                    485:     /* remove the TB from the hash list */
1.1.1.2   root      486:     h = tb_jmp_cache_hash_func(tb->pc);
                    487:     for(env = first_cpu; env != NULL; env = env->next_cpu) {
                    488:         if (env->tb_jmp_cache[h] == tb)
                    489:             env->tb_jmp_cache[h] = NULL;
1.1       root      490:     }
                    491: 
                    492:     /* suppress this TB from the two jump lists */
                    493:     tb_jmp_remove(tb, 0);
                    494:     tb_jmp_remove(tb, 1);
                    495: 
                    496:     /* suppress any remaining jumps to this TB */
                    497:     tb1 = tb->jmp_first;
                    498:     for(;;) {
                    499:         n1 = (long)tb1 & 3;
                    500:         if (n1 == 2)
                    501:             break;
                    502:         tb1 = (TranslationBlock *)((long)tb1 & ~3);
                    503:         tb2 = tb1->jmp_next[n1];
                    504:         tb_reset_jump(tb1, n1);
                    505:         tb1->jmp_next[n1] = NULL;
                    506:         tb1 = tb2;
                    507:     }
                    508:     tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
                    509: 
                    510:     tb_phys_invalidate_count++;
                    511: }
                    512: 
                    513: static inline void set_bits(uint8_t *tab, int start, int len)
                    514: {
                    515:     int end, mask, end1;
                    516: 
                    517:     end = start + len;
                    518:     tab += start >> 3;
                    519:     mask = 0xff << (start & 7);
                    520:     if ((start & ~7) == (end & ~7)) {
                    521:         if (start < end) {
                    522:             mask &= ~(0xff << (end & 7));
                    523:             *tab |= mask;
                    524:         }
                    525:     } else {
                    526:         *tab++ |= mask;
                    527:         start = (start + 8) & ~7;
                    528:         end1 = end & ~7;
                    529:         while (start < end1) {
                    530:             *tab++ = 0xff;
                    531:             start += 8;
                    532:         }
                    533:         if (start < end) {
                    534:             mask = ~(0xff << (end & 7));
                    535:             *tab |= mask;
                    536:         }
                    537:     }
                    538: }
                    539: 
                    540: static void build_page_bitmap(PageDesc *p)
                    541: {
                    542:     int n, tb_start, tb_end;
                    543:     TranslationBlock *tb;
                    544:     
                    545:     p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
                    546:     if (!p->code_bitmap)
                    547:         return;
                    548:     memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
                    549: 
                    550:     tb = p->first_tb;
                    551:     while (tb != NULL) {
                    552:         n = (long)tb & 3;
                    553:         tb = (TranslationBlock *)((long)tb & ~3);
                    554:         /* NOTE: this is subtle as a TB may span two physical pages */
                    555:         if (n == 0) {
                    556:             /* NOTE: tb_end may be after the end of the page, but
                    557:                it is not a problem */
                    558:             tb_start = tb->pc & ~TARGET_PAGE_MASK;
                    559:             tb_end = tb_start + tb->size;
                    560:             if (tb_end > TARGET_PAGE_SIZE)
                    561:                 tb_end = TARGET_PAGE_SIZE;
                    562:         } else {
                    563:             tb_start = 0;
                    564:             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
                    565:         }
                    566:         set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
                    567:         tb = tb->page_next[n];
                    568:     }
                    569: }
                    570: 
                    571: #ifdef TARGET_HAS_PRECISE_SMC
                    572: 
                    573: static void tb_gen_code(CPUState *env, 
                    574:                         target_ulong pc, target_ulong cs_base, int flags,
                    575:                         int cflags)
                    576: {
                    577:     TranslationBlock *tb;
                    578:     uint8_t *tc_ptr;
                    579:     target_ulong phys_pc, phys_page2, virt_page2;
                    580:     int code_gen_size;
                    581: 
                    582:     phys_pc = get_phys_addr_code(env, pc);
                    583:     tb = tb_alloc(pc);
                    584:     if (!tb) {
                    585:         /* flush must be done */
                    586:         tb_flush(env);
                    587:         /* cannot fail at this point */
                    588:         tb = tb_alloc(pc);
                    589:     }
                    590:     tc_ptr = code_gen_ptr;
                    591:     tb->tc_ptr = tc_ptr;
                    592:     tb->cs_base = cs_base;
                    593:     tb->flags = flags;
                    594:     tb->cflags = cflags;
                    595:     cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
                    596:     code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
                    597:     
                    598:     /* check next page if needed */
                    599:     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
                    600:     phys_page2 = -1;
                    601:     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
                    602:         phys_page2 = get_phys_addr_code(env, virt_page2);
                    603:     }
                    604:     tb_link_phys(tb, phys_pc, phys_page2);
                    605: }
                    606: #endif
                    607:     
                    608: /* invalidate all TBs which intersect with the target physical page
                    609:    starting in range [start;end[. NOTE: start and end must refer to
                    610:    the same physical page. 'is_cpu_write_access' should be true if called
                    611:    from a real cpu write access: the virtual CPU will exit the current
                    612:    TB if code is modified inside this TB. */
                    613: void tb_invalidate_phys_page_range(target_ulong start, target_ulong end, 
                    614:                                    int is_cpu_write_access)
                    615: {
                    616:     int n, current_tb_modified, current_tb_not_found, current_flags;
                    617:     CPUState *env = cpu_single_env;
                    618:     PageDesc *p;
                    619:     TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
                    620:     target_ulong tb_start, tb_end;
                    621:     target_ulong current_pc, current_cs_base;
                    622: 
                    623:     p = page_find(start >> TARGET_PAGE_BITS);
                    624:     if (!p) 
                    625:         return;
                    626:     if (!p->code_bitmap && 
                    627:         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
                    628:         is_cpu_write_access) {
                    629:         /* build code bitmap */
                    630:         build_page_bitmap(p);
                    631:     }
                    632: 
                    633:     /* we remove all the TBs in the range [start, end[ */
                    634:     /* XXX: see if in some cases it could be faster to invalidate all the code */
                    635:     current_tb_not_found = is_cpu_write_access;
                    636:     current_tb_modified = 0;
                    637:     current_tb = NULL; /* avoid warning */
                    638:     current_pc = 0; /* avoid warning */
                    639:     current_cs_base = 0; /* avoid warning */
                    640:     current_flags = 0; /* avoid warning */
                    641:     tb = p->first_tb;
                    642:     while (tb != NULL) {
                    643:         n = (long)tb & 3;
                    644:         tb = (TranslationBlock *)((long)tb & ~3);
                    645:         tb_next = tb->page_next[n];
                    646:         /* NOTE: this is subtle as a TB may span two physical pages */
                    647:         if (n == 0) {
                    648:             /* NOTE: tb_end may be after the end of the page, but
                    649:                it is not a problem */
                    650:             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
                    651:             tb_end = tb_start + tb->size;
                    652:         } else {
                    653:             tb_start = tb->page_addr[1];
                    654:             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
                    655:         }
                    656:         if (!(tb_end <= start || tb_start >= end)) {
                    657: #ifdef TARGET_HAS_PRECISE_SMC
                    658:             if (current_tb_not_found) {
                    659:                 current_tb_not_found = 0;
                    660:                 current_tb = NULL;
                    661:                 if (env->mem_write_pc) {
                    662:                     /* now we have a real cpu fault */
                    663:                     current_tb = tb_find_pc(env->mem_write_pc);
                    664:                 }
                    665:             }
                    666:             if (current_tb == tb &&
                    667:                 !(current_tb->cflags & CF_SINGLE_INSN)) {
                    668:                 /* If we are modifying the current TB, we must stop
                    669:                 its execution. We could be more precise by checking
                    670:                 that the modification is after the current PC, but it
                    671:                 would require a specialized function to partially
                    672:                 restore the CPU state */
                    673:                 
                    674:                 current_tb_modified = 1;
                    675:                 cpu_restore_state(current_tb, env, 
                    676:                                   env->mem_write_pc, NULL);
                    677: #if defined(TARGET_I386)
                    678:                 current_flags = env->hflags;
                    679:                 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
                    680:                 current_cs_base = (target_ulong)env->segs[R_CS].base;
                    681:                 current_pc = current_cs_base + env->eip;
                    682: #else
                    683: #error unsupported CPU
                    684: #endif
                    685:             }
                    686: #endif /* TARGET_HAS_PRECISE_SMC */
1.1.1.2   root      687:             /* we need to do that to handle the case where a signal
                    688:                occurs while doing tb_phys_invalidate() */
                    689:             saved_tb = NULL;
                    690:             if (env) {
                    691:                 saved_tb = env->current_tb;
                    692:                 env->current_tb = NULL;
                    693:             }
1.1       root      694:             tb_phys_invalidate(tb, -1);
1.1.1.2   root      695:             if (env) {
                    696:                 env->current_tb = saved_tb;
                    697:                 if (env->interrupt_request && env->current_tb)
                    698:                     cpu_interrupt(env, env->interrupt_request);
                    699:             }
1.1       root      700:         }
                    701:         tb = tb_next;
                    702:     }
                    703: #if !defined(CONFIG_USER_ONLY)
                    704:     /* if no code remaining, no need to continue to use slow writes */
                    705:     if (!p->first_tb) {
                    706:         invalidate_page_bitmap(p);
                    707:         if (is_cpu_write_access) {
                    708:             tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
                    709:         }
                    710:     }
                    711: #endif
                    712: #ifdef TARGET_HAS_PRECISE_SMC
                    713:     if (current_tb_modified) {
                    714:         /* we generate a block containing just the instruction
                    715:            modifying the memory. It will ensure that it cannot modify
                    716:            itself */
                    717:         env->current_tb = NULL;
                    718:         tb_gen_code(env, current_pc, current_cs_base, current_flags, 
                    719:                     CF_SINGLE_INSN);
                    720:         cpu_resume_from_signal(env, NULL);
                    721:     }
                    722: #endif
                    723: }
                    724: 
                    725: /* len must be <= 8 and start must be a multiple of len */
                    726: static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
                    727: {
                    728:     PageDesc *p;
                    729:     int offset, b;
                    730: #if 0
                    731:     if (1) {
                    732:         if (loglevel) {
                    733:             fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n", 
                    734:                    cpu_single_env->mem_write_vaddr, len, 
                    735:                    cpu_single_env->eip, 
                    736:                    cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
                    737:         }
                    738:     }
                    739: #endif
                    740:     p = page_find(start >> TARGET_PAGE_BITS);
                    741:     if (!p) 
                    742:         return;
                    743:     if (p->code_bitmap) {
                    744:         offset = start & ~TARGET_PAGE_MASK;
                    745:         b = p->code_bitmap[offset >> 3] >> (offset & 7);
                    746:         if (b & ((1 << len) - 1))
                    747:             goto do_invalidate;
                    748:     } else {
                    749:     do_invalidate:
                    750:         tb_invalidate_phys_page_range(start, start + len, 1);
                    751:     }
                    752: }
                    753: 
                    754: #if !defined(CONFIG_SOFTMMU)
                    755: static void tb_invalidate_phys_page(target_ulong addr, 
                    756:                                     unsigned long pc, void *puc)
                    757: {
                    758:     int n, current_flags, current_tb_modified;
                    759:     target_ulong current_pc, current_cs_base;
                    760:     PageDesc *p;
                    761:     TranslationBlock *tb, *current_tb;
                    762: #ifdef TARGET_HAS_PRECISE_SMC
                    763:     CPUState *env = cpu_single_env;
                    764: #endif
                    765: 
                    766:     addr &= TARGET_PAGE_MASK;
                    767:     p = page_find(addr >> TARGET_PAGE_BITS);
                    768:     if (!p) 
                    769:         return;
                    770:     tb = p->first_tb;
                    771:     current_tb_modified = 0;
                    772:     current_tb = NULL;
                    773:     current_pc = 0; /* avoid warning */
                    774:     current_cs_base = 0; /* avoid warning */
                    775:     current_flags = 0; /* avoid warning */
                    776: #ifdef TARGET_HAS_PRECISE_SMC
                    777:     if (tb && pc != 0) {
                    778:         current_tb = tb_find_pc(pc);
                    779:     }
                    780: #endif
                    781:     while (tb != NULL) {
                    782:         n = (long)tb & 3;
                    783:         tb = (TranslationBlock *)((long)tb & ~3);
                    784: #ifdef TARGET_HAS_PRECISE_SMC
                    785:         if (current_tb == tb &&
                    786:             !(current_tb->cflags & CF_SINGLE_INSN)) {
                    787:                 /* If we are modifying the current TB, we must stop
                    788:                    its execution. We could be more precise by checking
                    789:                    that the modification is after the current PC, but it
                    790:                    would require a specialized function to partially
                    791:                    restore the CPU state */
                    792:             
                    793:             current_tb_modified = 1;
                    794:             cpu_restore_state(current_tb, env, pc, puc);
                    795: #if defined(TARGET_I386)
                    796:             current_flags = env->hflags;
                    797:             current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
                    798:             current_cs_base = (target_ulong)env->segs[R_CS].base;
                    799:             current_pc = current_cs_base + env->eip;
                    800: #else
                    801: #error unsupported CPU
                    802: #endif
                    803:         }
                    804: #endif /* TARGET_HAS_PRECISE_SMC */
                    805:         tb_phys_invalidate(tb, addr);
                    806:         tb = tb->page_next[n];
                    807:     }
                    808:     p->first_tb = NULL;
                    809: #ifdef TARGET_HAS_PRECISE_SMC
                    810:     if (current_tb_modified) {
                    811:         /* we generate a block containing just the instruction
                    812:            modifying the memory. It will ensure that it cannot modify
                    813:            itself */
                    814:         env->current_tb = NULL;
                    815:         tb_gen_code(env, current_pc, current_cs_base, current_flags, 
                    816:                     CF_SINGLE_INSN);
                    817:         cpu_resume_from_signal(env, puc);
                    818:     }
                    819: #endif
                    820: }
                    821: #endif
                    822: 
                    823: /* add the tb in the target page and protect it if necessary */
                    824: static inline void tb_alloc_page(TranslationBlock *tb, 
1.1.1.3   root      825:                                  unsigned int n, target_ulong page_addr)
1.1       root      826: {
                    827:     PageDesc *p;
                    828:     TranslationBlock *last_first_tb;
                    829: 
                    830:     tb->page_addr[n] = page_addr;
                    831:     p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
                    832:     tb->page_next[n] = p->first_tb;
                    833:     last_first_tb = p->first_tb;
                    834:     p->first_tb = (TranslationBlock *)((long)tb | n);
                    835:     invalidate_page_bitmap(p);
                    836: 
                    837: #if defined(TARGET_HAS_SMC) || 1
                    838: 
                    839: #if defined(CONFIG_USER_ONLY)
                    840:     if (p->flags & PAGE_WRITE) {
1.1.1.3   root      841:         target_ulong addr;
                    842:         PageDesc *p2;
1.1       root      843:         int prot;
                    844: 
                    845:         /* force the host page as non writable (writes will have a
                    846:            page fault + mprotect overhead) */
1.1.1.3   root      847:         page_addr &= qemu_host_page_mask;
1.1       root      848:         prot = 0;
1.1.1.3   root      849:         for(addr = page_addr; addr < page_addr + qemu_host_page_size;
                    850:             addr += TARGET_PAGE_SIZE) {
                    851: 
                    852:             p2 = page_find (addr >> TARGET_PAGE_BITS);
                    853:             if (!p2)
                    854:                 continue;
                    855:             prot |= p2->flags;
                    856:             p2->flags &= ~PAGE_WRITE;
                    857:             page_get_flags(addr);
                    858:           }
                    859:         mprotect(g2h(page_addr), qemu_host_page_size, 
1.1       root      860:                  (prot & PAGE_BITS) & ~PAGE_WRITE);
                    861: #ifdef DEBUG_TB_INVALIDATE
                    862:         printf("protecting code page: 0x%08lx\n", 
1.1.1.3   root      863:                page_addr);
1.1       root      864: #endif
                    865:     }
                    866: #else
                    867:     /* if some code is already present, then the pages are already
                    868:        protected. So we handle the case where only the first TB is
                    869:        allocated in a physical page */
                    870:     if (!last_first_tb) {
1.1.1.2   root      871:         tlb_protect_code(page_addr);
1.1       root      872:     }
                    873: #endif
                    874: 
                    875: #endif /* TARGET_HAS_SMC */
                    876: }
                    877: 
                    878: /* Allocate a new translation block. Flush the translation buffer if
                    879:    too many translation blocks or too much generated code. */
                    880: TranslationBlock *tb_alloc(target_ulong pc)
                    881: {
                    882:     TranslationBlock *tb;
                    883: 
                    884:     if (nb_tbs >= CODE_GEN_MAX_BLOCKS || 
                    885:         (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
                    886:         return NULL;
                    887:     tb = &tbs[nb_tbs++];
                    888:     tb->pc = pc;
                    889:     tb->cflags = 0;
                    890:     return tb;
                    891: }
                    892: 
                    893: /* add a new TB and link it to the physical page tables. phys_page2 is
                    894:    (-1) to indicate that only one page contains the TB. */
                    895: void tb_link_phys(TranslationBlock *tb, 
                    896:                   target_ulong phys_pc, target_ulong phys_page2)
                    897: {
                    898:     unsigned int h;
                    899:     TranslationBlock **ptb;
                    900: 
                    901:     /* add in the physical hash table */
                    902:     h = tb_phys_hash_func(phys_pc);
                    903:     ptb = &tb_phys_hash[h];
                    904:     tb->phys_hash_next = *ptb;
                    905:     *ptb = tb;
                    906: 
                    907:     /* add in the page list */
                    908:     tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
                    909:     if (phys_page2 != -1)
                    910:         tb_alloc_page(tb, 1, phys_page2);
                    911:     else
                    912:         tb->page_addr[1] = -1;
                    913: 
                    914:     tb->jmp_first = (TranslationBlock *)((long)tb | 2);
                    915:     tb->jmp_next[0] = NULL;
                    916:     tb->jmp_next[1] = NULL;
                    917: #ifdef USE_CODE_COPY
                    918:     tb->cflags &= ~CF_FP_USED;
                    919:     if (tb->cflags & CF_TB_FP_USED)
                    920:         tb->cflags |= CF_FP_USED;
                    921: #endif
                    922: 
                    923:     /* init original jump addresses */
                    924:     if (tb->tb_next_offset[0] != 0xffff)
                    925:         tb_reset_jump(tb, 0);
                    926:     if (tb->tb_next_offset[1] != 0xffff)
                    927:         tb_reset_jump(tb, 1);
1.1.1.2   root      928: 
                    929: #ifdef DEBUG_TB_CHECK
                    930:     tb_page_check();
                    931: #endif
1.1       root      932: }
                    933: 
                    934: /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
                    935:    tb[1].tc_ptr. Return NULL if not found */
                    936: TranslationBlock *tb_find_pc(unsigned long tc_ptr)
                    937: {
                    938:     int m_min, m_max, m;
                    939:     unsigned long v;
                    940:     TranslationBlock *tb;
                    941: 
                    942:     if (nb_tbs <= 0)
                    943:         return NULL;
                    944:     if (tc_ptr < (unsigned long)code_gen_buffer ||
                    945:         tc_ptr >= (unsigned long)code_gen_ptr)
                    946:         return NULL;
                    947:     /* binary search (cf Knuth) */
                    948:     m_min = 0;
                    949:     m_max = nb_tbs - 1;
                    950:     while (m_min <= m_max) {
                    951:         m = (m_min + m_max) >> 1;
                    952:         tb = &tbs[m];
                    953:         v = (unsigned long)tb->tc_ptr;
                    954:         if (v == tc_ptr)
                    955:             return tb;
                    956:         else if (tc_ptr < v) {
                    957:             m_max = m - 1;
                    958:         } else {
                    959:             m_min = m + 1;
                    960:         }
                    961:     } 
                    962:     return &tbs[m_max];
                    963: }
                    964: 
                    965: static void tb_reset_jump_recursive(TranslationBlock *tb);
                    966: 
                    967: static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
                    968: {
                    969:     TranslationBlock *tb1, *tb_next, **ptb;
                    970:     unsigned int n1;
                    971: 
                    972:     tb1 = tb->jmp_next[n];
                    973:     if (tb1 != NULL) {
                    974:         /* find head of list */
                    975:         for(;;) {
                    976:             n1 = (long)tb1 & 3;
                    977:             tb1 = (TranslationBlock *)((long)tb1 & ~3);
                    978:             if (n1 == 2)
                    979:                 break;
                    980:             tb1 = tb1->jmp_next[n1];
                    981:         }
                    982:         /* we are now sure now that tb jumps to tb1 */
                    983:         tb_next = tb1;
                    984: 
                    985:         /* remove tb from the jmp_first list */
                    986:         ptb = &tb_next->jmp_first;
                    987:         for(;;) {
                    988:             tb1 = *ptb;
                    989:             n1 = (long)tb1 & 3;
                    990:             tb1 = (TranslationBlock *)((long)tb1 & ~3);
                    991:             if (n1 == n && tb1 == tb)
                    992:                 break;
                    993:             ptb = &tb1->jmp_next[n1];
                    994:         }
                    995:         *ptb = tb->jmp_next[n];
                    996:         tb->jmp_next[n] = NULL;
                    997:         
                    998:         /* suppress the jump to next tb in generated code */
                    999:         tb_reset_jump(tb, n);
                   1000: 
                   1001:         /* suppress jumps in the tb on which we could have jumped */
                   1002:         tb_reset_jump_recursive(tb_next);
                   1003:     }
                   1004: }
                   1005: 
                   1006: static void tb_reset_jump_recursive(TranslationBlock *tb)
                   1007: {
                   1008:     tb_reset_jump_recursive2(tb, 0);
                   1009:     tb_reset_jump_recursive2(tb, 1);
                   1010: }
                   1011: 
                   1012: #if defined(TARGET_HAS_ICE)
                   1013: static void breakpoint_invalidate(CPUState *env, target_ulong pc)
                   1014: {
1.1.1.3   root     1015:     target_ulong addr, pd;
                   1016:     ram_addr_t ram_addr;
                   1017:     PhysPageDesc *p;
1.1       root     1018: 
1.1.1.3   root     1019:     addr = cpu_get_phys_page_debug(env, pc);
                   1020:     p = phys_page_find(addr >> TARGET_PAGE_BITS);
                   1021:     if (!p) {
                   1022:         pd = IO_MEM_UNASSIGNED;
                   1023:     } else {
                   1024:         pd = p->phys_offset;
                   1025:     }
                   1026:     ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
                   1027:     tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1.1       root     1028: }
                   1029: #endif
                   1030: 
                   1031: /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
                   1032:    breakpoint is reached */
                   1033: int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
                   1034: {
                   1035: #if defined(TARGET_HAS_ICE)
                   1036:     int i;
                   1037:     
                   1038:     for(i = 0; i < env->nb_breakpoints; i++) {
                   1039:         if (env->breakpoints[i] == pc)
                   1040:             return 0;
                   1041:     }
                   1042: 
                   1043:     if (env->nb_breakpoints >= MAX_BREAKPOINTS)
                   1044:         return -1;
                   1045:     env->breakpoints[env->nb_breakpoints++] = pc;
                   1046:     
                   1047:     breakpoint_invalidate(env, pc);
                   1048:     return 0;
                   1049: #else
                   1050:     return -1;
                   1051: #endif
                   1052: }
                   1053: 
                   1054: /* remove a breakpoint */
                   1055: int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
                   1056: {
                   1057: #if defined(TARGET_HAS_ICE)
                   1058:     int i;
                   1059:     for(i = 0; i < env->nb_breakpoints; i++) {
                   1060:         if (env->breakpoints[i] == pc)
                   1061:             goto found;
                   1062:     }
                   1063:     return -1;
                   1064:  found:
                   1065:     env->nb_breakpoints--;
                   1066:     if (i < env->nb_breakpoints)
                   1067:       env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
                   1068: 
                   1069:     breakpoint_invalidate(env, pc);
                   1070:     return 0;
                   1071: #else
                   1072:     return -1;
                   1073: #endif
                   1074: }
                   1075: 
                   1076: /* enable or disable single step mode. EXCP_DEBUG is returned by the
                   1077:    CPU loop after each instruction */
                   1078: void cpu_single_step(CPUState *env, int enabled)
                   1079: {
                   1080: #if defined(TARGET_HAS_ICE)
                   1081:     if (env->singlestep_enabled != enabled) {
                   1082:         env->singlestep_enabled = enabled;
                   1083:         /* must flush all the translated code to avoid inconsistancies */
                   1084:         /* XXX: only flush what is necessary */
                   1085:         tb_flush(env);
                   1086:     }
                   1087: #endif
                   1088: }
                   1089: 
                   1090: /* enable or disable low levels log */
                   1091: void cpu_set_log(int log_flags)
                   1092: {
                   1093:     loglevel = log_flags;
                   1094:     if (loglevel && !logfile) {
                   1095:         logfile = fopen(logfilename, "w");
                   1096:         if (!logfile) {
                   1097:             perror(logfilename);
                   1098:             _exit(1);
                   1099:         }
                   1100: #if !defined(CONFIG_SOFTMMU)
                   1101:         /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
                   1102:         {
                   1103:             static uint8_t logfile_buf[4096];
                   1104:             setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
                   1105:         }
                   1106: #else
                   1107:         setvbuf(logfile, NULL, _IOLBF, 0);
                   1108: #endif
                   1109:     }
                   1110: }
                   1111: 
                   1112: void cpu_set_log_filename(const char *filename)
                   1113: {
                   1114:     logfilename = strdup(filename);
                   1115: }
                   1116: 
                   1117: /* mask must never be zero, except for A20 change call */
                   1118: void cpu_interrupt(CPUState *env, int mask)
                   1119: {
                   1120:     TranslationBlock *tb;
                   1121:     static int interrupt_lock;
                   1122: 
                   1123:     env->interrupt_request |= mask;
                   1124:     /* if the cpu is currently executing code, we must unlink it and
                   1125:        all the potentially executing TB */
                   1126:     tb = env->current_tb;
                   1127:     if (tb && !testandset(&interrupt_lock)) {
                   1128:         env->current_tb = NULL;
                   1129:         tb_reset_jump_recursive(tb);
                   1130:         interrupt_lock = 0;
                   1131:     }
                   1132: }
                   1133: 
                   1134: void cpu_reset_interrupt(CPUState *env, int mask)
                   1135: {
                   1136:     env->interrupt_request &= ~mask;
                   1137: }
                   1138: 
                   1139: CPULogItem cpu_log_items[] = {
                   1140:     { CPU_LOG_TB_OUT_ASM, "out_asm", 
                   1141:       "show generated host assembly code for each compiled TB" },
                   1142:     { CPU_LOG_TB_IN_ASM, "in_asm",
                   1143:       "show target assembly code for each compiled TB" },
                   1144:     { CPU_LOG_TB_OP, "op", 
                   1145:       "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
                   1146: #ifdef TARGET_I386
                   1147:     { CPU_LOG_TB_OP_OPT, "op_opt",
                   1148:       "show micro ops after optimization for each compiled TB" },
                   1149: #endif
                   1150:     { CPU_LOG_INT, "int",
                   1151:       "show interrupts/exceptions in short format" },
                   1152:     { CPU_LOG_EXEC, "exec",
                   1153:       "show trace before each executed TB (lots of logs)" },
                   1154:     { CPU_LOG_TB_CPU, "cpu",
                   1155:       "show CPU state before bloc translation" },
                   1156: #ifdef TARGET_I386
                   1157:     { CPU_LOG_PCALL, "pcall",
                   1158:       "show protected mode far calls/returns/exceptions" },
                   1159: #endif
                   1160: #ifdef DEBUG_IOPORT
                   1161:     { CPU_LOG_IOPORT, "ioport",
                   1162:       "show all i/o ports accesses" },
                   1163: #endif
                   1164:     { 0, NULL, NULL },
                   1165: };
                   1166: 
                   1167: static int cmp1(const char *s1, int n, const char *s2)
                   1168: {
                   1169:     if (strlen(s2) != n)
                   1170:         return 0;
                   1171:     return memcmp(s1, s2, n) == 0;
                   1172: }
                   1173:       
                   1174: /* takes a comma separated list of log masks. Return 0 if error. */
                   1175: int cpu_str_to_log_mask(const char *str)
                   1176: {
                   1177:     CPULogItem *item;
                   1178:     int mask;
                   1179:     const char *p, *p1;
                   1180: 
                   1181:     p = str;
                   1182:     mask = 0;
                   1183:     for(;;) {
                   1184:         p1 = strchr(p, ',');
                   1185:         if (!p1)
                   1186:             p1 = p + strlen(p);
                   1187:        if(cmp1(p,p1-p,"all")) {
                   1188:                for(item = cpu_log_items; item->mask != 0; item++) {
                   1189:                        mask |= item->mask;
                   1190:                }
                   1191:        } else {
                   1192:         for(item = cpu_log_items; item->mask != 0; item++) {
                   1193:             if (cmp1(p, p1 - p, item->name))
                   1194:                 goto found;
                   1195:         }
                   1196:         return 0;
                   1197:        }
                   1198:     found:
                   1199:         mask |= item->mask;
                   1200:         if (*p1 != ',')
                   1201:             break;
                   1202:         p = p1 + 1;
                   1203:     }
                   1204:     return mask;
                   1205: }
                   1206: 
                   1207: void cpu_abort(CPUState *env, const char *fmt, ...)
                   1208: {
                   1209:     va_list ap;
                   1210: 
                   1211:     va_start(ap, fmt);
                   1212:     fprintf(stderr, "qemu: fatal: ");
                   1213:     vfprintf(stderr, fmt, ap);
                   1214:     fprintf(stderr, "\n");
                   1215: #ifdef TARGET_I386
                   1216:     cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
                   1217: #else
                   1218:     cpu_dump_state(env, stderr, fprintf, 0);
                   1219: #endif
                   1220:     va_end(ap);
                   1221:     abort();
                   1222: }
                   1223: 
                   1224: #if !defined(CONFIG_USER_ONLY)
                   1225: 
                   1226: /* NOTE: if flush_global is true, also flush global entries (not
                   1227:    implemented yet) */
                   1228: void tlb_flush(CPUState *env, int flush_global)
                   1229: {
                   1230:     int i;
                   1231: 
                   1232: #if defined(DEBUG_TLB)
                   1233:     printf("tlb_flush:\n");
                   1234: #endif
                   1235:     /* must reset current TB so that interrupts cannot modify the
                   1236:        links while we are modifying them */
                   1237:     env->current_tb = NULL;
                   1238: 
                   1239:     for(i = 0; i < CPU_TLB_SIZE; i++) {
1.1.1.2   root     1240:         env->tlb_table[0][i].addr_read = -1;
                   1241:         env->tlb_table[0][i].addr_write = -1;
                   1242:         env->tlb_table[0][i].addr_code = -1;
                   1243:         env->tlb_table[1][i].addr_read = -1;
                   1244:         env->tlb_table[1][i].addr_write = -1;
                   1245:         env->tlb_table[1][i].addr_code = -1;
1.1       root     1246:     }
                   1247: 
1.1.1.2   root     1248:     memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1.1       root     1249: 
                   1250: #if !defined(CONFIG_SOFTMMU)
                   1251:     munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
                   1252: #endif
                   1253: #ifdef USE_KQEMU
                   1254:     if (env->kqemu_enabled) {
                   1255:         kqemu_flush(env, flush_global);
                   1256:     }
                   1257: #endif
                   1258:     tlb_flush_count++;
                   1259: }
                   1260: 
                   1261: static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
                   1262: {
1.1.1.2   root     1263:     if (addr == (tlb_entry->addr_read & 
                   1264:                  (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
                   1265:         addr == (tlb_entry->addr_write & 
                   1266:                  (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
                   1267:         addr == (tlb_entry->addr_code & 
                   1268:                  (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
                   1269:         tlb_entry->addr_read = -1;
                   1270:         tlb_entry->addr_write = -1;
                   1271:         tlb_entry->addr_code = -1;
                   1272:     }
1.1       root     1273: }
                   1274: 
                   1275: void tlb_flush_page(CPUState *env, target_ulong addr)
                   1276: {
1.1.1.2   root     1277:     int i;
1.1       root     1278:     TranslationBlock *tb;
                   1279: 
                   1280: #if defined(DEBUG_TLB)
                   1281:     printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
                   1282: #endif
                   1283:     /* must reset current TB so that interrupts cannot modify the
                   1284:        links while we are modifying them */
                   1285:     env->current_tb = NULL;
                   1286: 
                   1287:     addr &= TARGET_PAGE_MASK;
                   1288:     i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1.1.1.2   root     1289:     tlb_flush_entry(&env->tlb_table[0][i], addr);
                   1290:     tlb_flush_entry(&env->tlb_table[1][i], addr);
1.1       root     1291: 
1.1.1.5 ! root     1292:     /* Discard jump cache entries for any tb which might potentially
        !          1293:        overlap the flushed page.  */
        !          1294:     i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
        !          1295:     memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
        !          1296: 
        !          1297:     i = tb_jmp_cache_hash_page(addr);
        !          1298:     memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1.1       root     1299: 
                   1300: #if !defined(CONFIG_SOFTMMU)
                   1301:     if (addr < MMAP_AREA_END)
                   1302:         munmap((void *)addr, TARGET_PAGE_SIZE);
                   1303: #endif
                   1304: #ifdef USE_KQEMU
                   1305:     if (env->kqemu_enabled) {
                   1306:         kqemu_flush_page(env, addr);
                   1307:     }
                   1308: #endif
                   1309: }
                   1310: 
                   1311: /* update the TLBs so that writes to code in the virtual page 'addr'
                   1312:    can be detected */
1.1.1.2   root     1313: static void tlb_protect_code(ram_addr_t ram_addr)
1.1       root     1314: {
1.1.1.2   root     1315:     cpu_physical_memory_reset_dirty(ram_addr, 
                   1316:                                     ram_addr + TARGET_PAGE_SIZE,
                   1317:                                     CODE_DIRTY_FLAG);
1.1       root     1318: }
                   1319: 
                   1320: /* update the TLB so that writes in physical page 'phys_addr' are no longer
                   1321:    tested for self modifying code */
                   1322: static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, 
                   1323:                                     target_ulong vaddr)
                   1324: {
                   1325:     phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
                   1326: }
                   1327: 
                   1328: static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, 
                   1329:                                          unsigned long start, unsigned long length)
                   1330: {
                   1331:     unsigned long addr;
1.1.1.2   root     1332:     if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
                   1333:         addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1.1       root     1334:         if ((addr - start) < length) {
1.1.1.2   root     1335:             tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1.1       root     1336:         }
                   1337:     }
                   1338: }
                   1339: 
                   1340: void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
                   1341:                                      int dirty_flags)
                   1342: {
                   1343:     CPUState *env;
                   1344:     unsigned long length, start1;
                   1345:     int i, mask, len;
                   1346:     uint8_t *p;
                   1347: 
                   1348:     start &= TARGET_PAGE_MASK;
                   1349:     end = TARGET_PAGE_ALIGN(end);
                   1350: 
                   1351:     length = end - start;
                   1352:     if (length == 0)
                   1353:         return;
                   1354:     len = length >> TARGET_PAGE_BITS;
                   1355: #ifdef USE_KQEMU
1.1.1.2   root     1356:     /* XXX: should not depend on cpu context */
                   1357:     env = first_cpu;
1.1       root     1358:     if (env->kqemu_enabled) {
                   1359:         ram_addr_t addr;
                   1360:         addr = start;
                   1361:         for(i = 0; i < len; i++) {
                   1362:             kqemu_set_notdirty(env, addr);
                   1363:             addr += TARGET_PAGE_SIZE;
                   1364:         }
                   1365:     }
                   1366: #endif
                   1367:     mask = ~dirty_flags;
                   1368:     p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
                   1369:     for(i = 0; i < len; i++)
                   1370:         p[i] &= mask;
                   1371: 
                   1372:     /* we modify the TLB cache so that the dirty bit will be set again
                   1373:        when accessing the range */
                   1374:     start1 = start + (unsigned long)phys_ram_base;
1.1.1.2   root     1375:     for(env = first_cpu; env != NULL; env = env->next_cpu) {
                   1376:         for(i = 0; i < CPU_TLB_SIZE; i++)
                   1377:             tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
                   1378:         for(i = 0; i < CPU_TLB_SIZE; i++)
                   1379:             tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
                   1380:     }
1.1       root     1381: 
                   1382: #if !defined(CONFIG_SOFTMMU)
                   1383:     /* XXX: this is expensive */
                   1384:     {
                   1385:         VirtPageDesc *p;
                   1386:         int j;
                   1387:         target_ulong addr;
                   1388: 
                   1389:         for(i = 0; i < L1_SIZE; i++) {
                   1390:             p = l1_virt_map[i];
                   1391:             if (p) {
                   1392:                 addr = i << (TARGET_PAGE_BITS + L2_BITS);
                   1393:                 for(j = 0; j < L2_SIZE; j++) {
                   1394:                     if (p->valid_tag == virt_valid_tag &&
                   1395:                         p->phys_addr >= start && p->phys_addr < end &&
                   1396:                         (p->prot & PROT_WRITE)) {
                   1397:                         if (addr < MMAP_AREA_END) {
                   1398:                             mprotect((void *)addr, TARGET_PAGE_SIZE, 
                   1399:                                      p->prot & ~PROT_WRITE);
                   1400:                         }
                   1401:                     }
                   1402:                     addr += TARGET_PAGE_SIZE;
                   1403:                     p++;
                   1404:                 }
                   1405:             }
                   1406:         }
                   1407:     }
                   1408: #endif
                   1409: }
                   1410: 
                   1411: static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
                   1412: {
                   1413:     ram_addr_t ram_addr;
                   1414: 
1.1.1.2   root     1415:     if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
                   1416:         ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + 
1.1       root     1417:             tlb_entry->addend - (unsigned long)phys_ram_base;
                   1418:         if (!cpu_physical_memory_is_dirty(ram_addr)) {
1.1.1.2   root     1419:             tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
1.1       root     1420:         }
                   1421:     }
                   1422: }
                   1423: 
                   1424: /* update the TLB according to the current state of the dirty bits */
                   1425: void cpu_tlb_update_dirty(CPUState *env)
                   1426: {
                   1427:     int i;
                   1428:     for(i = 0; i < CPU_TLB_SIZE; i++)
1.1.1.2   root     1429:         tlb_update_dirty(&env->tlb_table[0][i]);
1.1       root     1430:     for(i = 0; i < CPU_TLB_SIZE; i++)
1.1.1.2   root     1431:         tlb_update_dirty(&env->tlb_table[1][i]);
1.1       root     1432: }
                   1433: 
                   1434: static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, 
                   1435:                                   unsigned long start)
                   1436: {
                   1437:     unsigned long addr;
1.1.1.2   root     1438:     if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
                   1439:         addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1.1       root     1440:         if (addr == start) {
1.1.1.2   root     1441:             tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1.1       root     1442:         }
                   1443:     }
                   1444: }
                   1445: 
                   1446: /* update the TLB corresponding to virtual page vaddr and phys addr
                   1447:    addr so that it is no longer dirty */
1.1.1.2   root     1448: static inline void tlb_set_dirty(CPUState *env,
                   1449:                                  unsigned long addr, target_ulong vaddr)
1.1       root     1450: {
                   1451:     int i;
                   1452: 
                   1453:     addr &= TARGET_PAGE_MASK;
                   1454:     i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1.1.1.2   root     1455:     tlb_set_dirty1(&env->tlb_table[0][i], addr);
                   1456:     tlb_set_dirty1(&env->tlb_table[1][i], addr);
1.1       root     1457: }
                   1458: 
                   1459: /* add a new TLB entry. At most one entry for a given virtual address
                   1460:    is permitted. Return 0 if OK or 2 if the page could not be mapped
                   1461:    (can only happen in non SOFTMMU mode for I/O pages or pages
                   1462:    conflicting with the host address space). */
1.1.1.2   root     1463: int tlb_set_page_exec(CPUState *env, target_ulong vaddr, 
                   1464:                       target_phys_addr_t paddr, int prot, 
                   1465:                       int is_user, int is_softmmu)
1.1       root     1466: {
                   1467:     PhysPageDesc *p;
                   1468:     unsigned long pd;
                   1469:     unsigned int index;
                   1470:     target_ulong address;
                   1471:     target_phys_addr_t addend;
                   1472:     int ret;
1.1.1.2   root     1473:     CPUTLBEntry *te;
1.1       root     1474: 
                   1475:     p = phys_page_find(paddr >> TARGET_PAGE_BITS);
                   1476:     if (!p) {
                   1477:         pd = IO_MEM_UNASSIGNED;
                   1478:     } else {
                   1479:         pd = p->phys_offset;
                   1480:     }
                   1481: #if defined(DEBUG_TLB)
                   1482:     printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x u=%d smmu=%d pd=0x%08lx\n",
1.1.1.2   root     1483:            vaddr, (int)paddr, prot, is_user, is_softmmu, pd);
1.1       root     1484: #endif
                   1485: 
                   1486:     ret = 0;
                   1487: #if !defined(CONFIG_SOFTMMU)
                   1488:     if (is_softmmu) 
                   1489: #endif
                   1490:     {
1.1.1.4   root     1491:         if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1.1       root     1492:             /* IO memory case */
                   1493:             address = vaddr | pd;
                   1494:             addend = paddr;
                   1495:         } else {
                   1496:             /* standard memory */
                   1497:             address = vaddr;
                   1498:             addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
                   1499:         }
                   1500:         
                   1501:         index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
                   1502:         addend -= vaddr;
1.1.1.2   root     1503:         te = &env->tlb_table[is_user][index];
                   1504:         te->addend = addend;
1.1       root     1505:         if (prot & PAGE_READ) {
1.1.1.2   root     1506:             te->addr_read = address;
                   1507:         } else {
                   1508:             te->addr_read = -1;
                   1509:         }
                   1510:         if (prot & PAGE_EXEC) {
                   1511:             te->addr_code = address;
1.1       root     1512:         } else {
1.1.1.2   root     1513:             te->addr_code = -1;
1.1       root     1514:         }
                   1515:         if (prot & PAGE_WRITE) {
1.1.1.4   root     1516:             if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || 
                   1517:                 (pd & IO_MEM_ROMD)) {
                   1518:                 /* write access calls the I/O callback */
                   1519:                 te->addr_write = vaddr | 
                   1520:                     (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
1.1       root     1521:             } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && 
                   1522:                        !cpu_physical_memory_is_dirty(pd)) {
1.1.1.2   root     1523:                 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
1.1       root     1524:             } else {
1.1.1.2   root     1525:                 te->addr_write = address;
1.1       root     1526:             }
                   1527:         } else {
1.1.1.2   root     1528:             te->addr_write = -1;
1.1       root     1529:         }
                   1530:     }
                   1531: #if !defined(CONFIG_SOFTMMU)
                   1532:     else {
                   1533:         if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
                   1534:             /* IO access: no mapping is done as it will be handled by the
                   1535:                soft MMU */
                   1536:             if (!(env->hflags & HF_SOFTMMU_MASK))
                   1537:                 ret = 2;
                   1538:         } else {
                   1539:             void *map_addr;
                   1540: 
                   1541:             if (vaddr >= MMAP_AREA_END) {
                   1542:                 ret = 2;
                   1543:             } else {
                   1544:                 if (prot & PROT_WRITE) {
                   1545:                     if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || 
                   1546: #if defined(TARGET_HAS_SMC) || 1
                   1547:                         first_tb ||
                   1548: #endif
                   1549:                         ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && 
                   1550:                          !cpu_physical_memory_is_dirty(pd))) {
                   1551:                         /* ROM: we do as if code was inside */
                   1552:                         /* if code is present, we only map as read only and save the
                   1553:                            original mapping */
                   1554:                         VirtPageDesc *vp;
                   1555:                         
                   1556:                         vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
                   1557:                         vp->phys_addr = pd;
                   1558:                         vp->prot = prot;
                   1559:                         vp->valid_tag = virt_valid_tag;
                   1560:                         prot &= ~PAGE_WRITE;
                   1561:                     }
                   1562:                 }
                   1563:                 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot, 
                   1564:                                 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
                   1565:                 if (map_addr == MAP_FAILED) {
                   1566:                     cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
                   1567:                               paddr, vaddr);
                   1568:                 }
                   1569:             }
                   1570:         }
                   1571:     }
                   1572: #endif
                   1573:     return ret;
                   1574: }
                   1575: 
                   1576: /* called from signal handler: invalidate the code and unprotect the
                   1577:    page. Return TRUE if the fault was succesfully handled. */
1.1.1.3   root     1578: int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
1.1       root     1579: {
                   1580: #if !defined(CONFIG_SOFTMMU)
                   1581:     VirtPageDesc *vp;
                   1582: 
                   1583: #if defined(DEBUG_TLB)
                   1584:     printf("page_unprotect: addr=0x%08x\n", addr);
                   1585: #endif
                   1586:     addr &= TARGET_PAGE_MASK;
                   1587: 
                   1588:     /* if it is not mapped, no need to worry here */
                   1589:     if (addr >= MMAP_AREA_END)
                   1590:         return 0;
                   1591:     vp = virt_page_find(addr >> TARGET_PAGE_BITS);
                   1592:     if (!vp)
                   1593:         return 0;
                   1594:     /* NOTE: in this case, validate_tag is _not_ tested as it
                   1595:        validates only the code TLB */
                   1596:     if (vp->valid_tag != virt_valid_tag)
                   1597:         return 0;
                   1598:     if (!(vp->prot & PAGE_WRITE))
                   1599:         return 0;
                   1600: #if defined(DEBUG_TLB)
                   1601:     printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n", 
                   1602:            addr, vp->phys_addr, vp->prot);
                   1603: #endif
                   1604:     if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
                   1605:         cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
                   1606:                   (unsigned long)addr, vp->prot);
                   1607:     /* set the dirty bit */
                   1608:     phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
                   1609:     /* flush the code inside */
                   1610:     tb_invalidate_phys_page(vp->phys_addr, pc, puc);
                   1611:     return 1;
                   1612: #else
                   1613:     return 0;
                   1614: #endif
                   1615: }
                   1616: 
                   1617: #else
                   1618: 
                   1619: void tlb_flush(CPUState *env, int flush_global)
                   1620: {
                   1621: }
                   1622: 
                   1623: void tlb_flush_page(CPUState *env, target_ulong addr)
                   1624: {
                   1625: }
                   1626: 
1.1.1.2   root     1627: int tlb_set_page_exec(CPUState *env, target_ulong vaddr, 
                   1628:                       target_phys_addr_t paddr, int prot, 
                   1629:                       int is_user, int is_softmmu)
1.1       root     1630: {
                   1631:     return 0;
                   1632: }
                   1633: 
                   1634: /* dump memory mappings */
                   1635: void page_dump(FILE *f)
                   1636: {
                   1637:     unsigned long start, end;
                   1638:     int i, j, prot, prot1;
                   1639:     PageDesc *p;
                   1640: 
                   1641:     fprintf(f, "%-8s %-8s %-8s %s\n",
                   1642:             "start", "end", "size", "prot");
                   1643:     start = -1;
                   1644:     end = -1;
                   1645:     prot = 0;
                   1646:     for(i = 0; i <= L1_SIZE; i++) {
                   1647:         if (i < L1_SIZE)
                   1648:             p = l1_map[i];
                   1649:         else
                   1650:             p = NULL;
                   1651:         for(j = 0;j < L2_SIZE; j++) {
                   1652:             if (!p)
                   1653:                 prot1 = 0;
                   1654:             else
                   1655:                 prot1 = p[j].flags;
                   1656:             if (prot1 != prot) {
                   1657:                 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
                   1658:                 if (start != -1) {
                   1659:                     fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
                   1660:                             start, end, end - start, 
                   1661:                             prot & PAGE_READ ? 'r' : '-',
                   1662:                             prot & PAGE_WRITE ? 'w' : '-',
                   1663:                             prot & PAGE_EXEC ? 'x' : '-');
                   1664:                 }
                   1665:                 if (prot1 != 0)
                   1666:                     start = end;
                   1667:                 else
                   1668:                     start = -1;
                   1669:                 prot = prot1;
                   1670:             }
                   1671:             if (!p)
                   1672:                 break;
                   1673:         }
                   1674:     }
                   1675: }
                   1676: 
1.1.1.3   root     1677: int page_get_flags(target_ulong address)
1.1       root     1678: {
                   1679:     PageDesc *p;
                   1680: 
                   1681:     p = page_find(address >> TARGET_PAGE_BITS);
                   1682:     if (!p)
                   1683:         return 0;
                   1684:     return p->flags;
                   1685: }
                   1686: 
                   1687: /* modify the flags of a page and invalidate the code if
                   1688:    necessary. The flag PAGE_WRITE_ORG is positionned automatically
                   1689:    depending on PAGE_WRITE */
1.1.1.3   root     1690: void page_set_flags(target_ulong start, target_ulong end, int flags)
1.1       root     1691: {
                   1692:     PageDesc *p;
1.1.1.3   root     1693:     target_ulong addr;
1.1       root     1694: 
                   1695:     start = start & TARGET_PAGE_MASK;
                   1696:     end = TARGET_PAGE_ALIGN(end);
                   1697:     if (flags & PAGE_WRITE)
                   1698:         flags |= PAGE_WRITE_ORG;
                   1699:     spin_lock(&tb_lock);
                   1700:     for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
                   1701:         p = page_find_alloc(addr >> TARGET_PAGE_BITS);
                   1702:         /* if the write protection is set, then we invalidate the code
                   1703:            inside */
                   1704:         if (!(p->flags & PAGE_WRITE) && 
                   1705:             (flags & PAGE_WRITE) &&
                   1706:             p->first_tb) {
                   1707:             tb_invalidate_phys_page(addr, 0, NULL);
                   1708:         }
                   1709:         p->flags = flags;
                   1710:     }
                   1711:     spin_unlock(&tb_lock);
                   1712: }
                   1713: 
                   1714: /* called from signal handler: invalidate the code and unprotect the
                   1715:    page. Return TRUE if the fault was succesfully handled. */
1.1.1.3   root     1716: int page_unprotect(target_ulong address, unsigned long pc, void *puc)
1.1       root     1717: {
                   1718:     unsigned int page_index, prot, pindex;
                   1719:     PageDesc *p, *p1;
1.1.1.3   root     1720:     target_ulong host_start, host_end, addr;
1.1       root     1721: 
                   1722:     host_start = address & qemu_host_page_mask;
                   1723:     page_index = host_start >> TARGET_PAGE_BITS;
                   1724:     p1 = page_find(page_index);
                   1725:     if (!p1)
                   1726:         return 0;
                   1727:     host_end = host_start + qemu_host_page_size;
                   1728:     p = p1;
                   1729:     prot = 0;
                   1730:     for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
                   1731:         prot |= p->flags;
                   1732:         p++;
                   1733:     }
                   1734:     /* if the page was really writable, then we change its
                   1735:        protection back to writable */
                   1736:     if (prot & PAGE_WRITE_ORG) {
                   1737:         pindex = (address - host_start) >> TARGET_PAGE_BITS;
                   1738:         if (!(p1[pindex].flags & PAGE_WRITE)) {
1.1.1.3   root     1739:             mprotect((void *)g2h(host_start), qemu_host_page_size, 
1.1       root     1740:                      (prot & PAGE_BITS) | PAGE_WRITE);
                   1741:             p1[pindex].flags |= PAGE_WRITE;
                   1742:             /* and since the content will be modified, we must invalidate
                   1743:                the corresponding translated code. */
                   1744:             tb_invalidate_phys_page(address, pc, puc);
                   1745: #ifdef DEBUG_TB_CHECK
                   1746:             tb_invalidate_check(address);
                   1747: #endif
                   1748:             return 1;
                   1749:         }
                   1750:     }
                   1751:     return 0;
                   1752: }
                   1753: 
                   1754: /* call this function when system calls directly modify a memory area */
1.1.1.3   root     1755: /* ??? This should be redundant now we have lock_user.  */
                   1756: void page_unprotect_range(target_ulong data, target_ulong data_size)
1.1       root     1757: {
1.1.1.3   root     1758:     target_ulong start, end, addr;
1.1       root     1759: 
1.1.1.3   root     1760:     start = data;
1.1       root     1761:     end = start + data_size;
                   1762:     start &= TARGET_PAGE_MASK;
                   1763:     end = TARGET_PAGE_ALIGN(end);
                   1764:     for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
                   1765:         page_unprotect(addr, 0, NULL);
                   1766:     }
                   1767: }
                   1768: 
1.1.1.2   root     1769: static inline void tlb_set_dirty(CPUState *env,
                   1770:                                  unsigned long addr, target_ulong vaddr)
1.1       root     1771: {
                   1772: }
                   1773: #endif /* defined(CONFIG_USER_ONLY) */
                   1774: 
                   1775: /* register physical memory. 'size' must be a multiple of the target
                   1776:    page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
                   1777:    io memory page */
                   1778: void cpu_register_physical_memory(target_phys_addr_t start_addr, 
                   1779:                                   unsigned long size,
                   1780:                                   unsigned long phys_offset)
                   1781: {
                   1782:     target_phys_addr_t addr, end_addr;
                   1783:     PhysPageDesc *p;
1.1.1.4   root     1784:     CPUState *env;
1.1       root     1785: 
                   1786:     size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
                   1787:     end_addr = start_addr + size;
                   1788:     for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
                   1789:         p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
                   1790:         p->phys_offset = phys_offset;
1.1.1.4   root     1791:         if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
                   1792:             (phys_offset & IO_MEM_ROMD))
1.1       root     1793:             phys_offset += TARGET_PAGE_SIZE;
                   1794:     }
1.1.1.4   root     1795:     
                   1796:     /* since each CPU stores ram addresses in its TLB cache, we must
                   1797:        reset the modified entries */
                   1798:     /* XXX: slow ! */
                   1799:     for(env = first_cpu; env != NULL; env = env->next_cpu) {
                   1800:         tlb_flush(env, 1);
                   1801:     }
1.1       root     1802: }
                   1803: 
1.1.1.5 ! root     1804: /* XXX: temporary until new memory mapping API */
        !          1805: uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr)
        !          1806: {
        !          1807:     PhysPageDesc *p;
        !          1808: 
        !          1809:     p = phys_page_find(addr >> TARGET_PAGE_BITS);
        !          1810:     if (!p)
        !          1811:         return IO_MEM_UNASSIGNED;
        !          1812:     return p->phys_offset;
        !          1813: }
        !          1814: 
1.1       root     1815: static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
                   1816: {
1.1.1.5 ! root     1817: #ifdef DEBUG_UNASSIGNED
        !          1818:     printf("Unassigned mem read  0x%08x\n", (int)addr);
        !          1819: #endif
1.1       root     1820:     return 0;
                   1821: }
                   1822: 
                   1823: static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
                   1824: {
1.1.1.5 ! root     1825: #ifdef DEBUG_UNASSIGNED
        !          1826:     printf("Unassigned mem write 0x%08x = 0x%x\n", (int)addr, val);
        !          1827: #endif
1.1       root     1828: }
                   1829: 
                   1830: static CPUReadMemoryFunc *unassigned_mem_read[3] = {
                   1831:     unassigned_mem_readb,
                   1832:     unassigned_mem_readb,
                   1833:     unassigned_mem_readb,
                   1834: };
                   1835: 
                   1836: static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
                   1837:     unassigned_mem_writeb,
                   1838:     unassigned_mem_writeb,
                   1839:     unassigned_mem_writeb,
                   1840: };
                   1841: 
                   1842: static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
                   1843: {
                   1844:     unsigned long ram_addr;
                   1845:     int dirty_flags;
                   1846:     ram_addr = addr - (unsigned long)phys_ram_base;
                   1847:     dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
                   1848:     if (!(dirty_flags & CODE_DIRTY_FLAG)) {
                   1849: #if !defined(CONFIG_USER_ONLY)
                   1850:         tb_invalidate_phys_page_fast(ram_addr, 1);
                   1851:         dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
                   1852: #endif
                   1853:     }
                   1854:     stb_p((uint8_t *)(long)addr, val);
1.1.1.3   root     1855: #ifdef USE_KQEMU
                   1856:     if (cpu_single_env->kqemu_enabled &&
                   1857:         (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
                   1858:         kqemu_modify_page(cpu_single_env, ram_addr);
                   1859: #endif
1.1       root     1860:     dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
                   1861:     phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
                   1862:     /* we remove the notdirty callback only if the code has been
                   1863:        flushed */
                   1864:     if (dirty_flags == 0xff)
1.1.1.2   root     1865:         tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
1.1       root     1866: }
                   1867: 
                   1868: static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
                   1869: {
                   1870:     unsigned long ram_addr;
                   1871:     int dirty_flags;
                   1872:     ram_addr = addr - (unsigned long)phys_ram_base;
                   1873:     dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
                   1874:     if (!(dirty_flags & CODE_DIRTY_FLAG)) {
                   1875: #if !defined(CONFIG_USER_ONLY)
                   1876:         tb_invalidate_phys_page_fast(ram_addr, 2);
                   1877:         dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
                   1878: #endif
                   1879:     }
                   1880:     stw_p((uint8_t *)(long)addr, val);
1.1.1.3   root     1881: #ifdef USE_KQEMU
                   1882:     if (cpu_single_env->kqemu_enabled &&
                   1883:         (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
                   1884:         kqemu_modify_page(cpu_single_env, ram_addr);
                   1885: #endif
1.1       root     1886:     dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
                   1887:     phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
                   1888:     /* we remove the notdirty callback only if the code has been
                   1889:        flushed */
                   1890:     if (dirty_flags == 0xff)
1.1.1.2   root     1891:         tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
1.1       root     1892: }
                   1893: 
                   1894: static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
                   1895: {
                   1896:     unsigned long ram_addr;
                   1897:     int dirty_flags;
                   1898:     ram_addr = addr - (unsigned long)phys_ram_base;
                   1899:     dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
                   1900:     if (!(dirty_flags & CODE_DIRTY_FLAG)) {
                   1901: #if !defined(CONFIG_USER_ONLY)
                   1902:         tb_invalidate_phys_page_fast(ram_addr, 4);
                   1903:         dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
                   1904: #endif
                   1905:     }
                   1906:     stl_p((uint8_t *)(long)addr, val);
1.1.1.3   root     1907: #ifdef USE_KQEMU
                   1908:     if (cpu_single_env->kqemu_enabled &&
                   1909:         (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
                   1910:         kqemu_modify_page(cpu_single_env, ram_addr);
                   1911: #endif
1.1       root     1912:     dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
                   1913:     phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
                   1914:     /* we remove the notdirty callback only if the code has been
                   1915:        flushed */
                   1916:     if (dirty_flags == 0xff)
1.1.1.2   root     1917:         tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
1.1       root     1918: }
                   1919: 
                   1920: static CPUReadMemoryFunc *error_mem_read[3] = {
                   1921:     NULL, /* never used */
                   1922:     NULL, /* never used */
                   1923:     NULL, /* never used */
                   1924: };
                   1925: 
                   1926: static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
                   1927:     notdirty_mem_writeb,
                   1928:     notdirty_mem_writew,
                   1929:     notdirty_mem_writel,
                   1930: };
                   1931: 
                   1932: static void io_mem_init(void)
                   1933: {
                   1934:     cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
                   1935:     cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
                   1936:     cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
                   1937:     io_mem_nb = 5;
                   1938: 
                   1939:     /* alloc dirty bits array */
                   1940:     phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
                   1941:     memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
                   1942: }
                   1943: 
                   1944: /* mem_read and mem_write are arrays of functions containing the
                   1945:    function to access byte (index 0), word (index 1) and dword (index
                   1946:    2). All functions must be supplied. If io_index is non zero, the
                   1947:    corresponding io zone is modified. If it is zero, a new io zone is
                   1948:    allocated. The return value can be used with
                   1949:    cpu_register_physical_memory(). (-1) is returned if error. */
                   1950: int cpu_register_io_memory(int io_index,
                   1951:                            CPUReadMemoryFunc **mem_read,
                   1952:                            CPUWriteMemoryFunc **mem_write,
                   1953:                            void *opaque)
                   1954: {
                   1955:     int i;
                   1956: 
                   1957:     if (io_index <= 0) {
1.1.1.2   root     1958:         if (io_mem_nb >= IO_MEM_NB_ENTRIES)
1.1       root     1959:             return -1;
                   1960:         io_index = io_mem_nb++;
                   1961:     } else {
                   1962:         if (io_index >= IO_MEM_NB_ENTRIES)
                   1963:             return -1;
                   1964:     }
1.1.1.2   root     1965: 
1.1       root     1966:     for(i = 0;i < 3; i++) {
                   1967:         io_mem_read[io_index][i] = mem_read[i];
                   1968:         io_mem_write[io_index][i] = mem_write[i];
                   1969:     }
                   1970:     io_mem_opaque[io_index] = opaque;
                   1971:     return io_index << IO_MEM_SHIFT;
                   1972: }
                   1973: 
                   1974: CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
                   1975: {
                   1976:     return io_mem_write[io_index >> IO_MEM_SHIFT];
                   1977: }
                   1978: 
                   1979: CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
                   1980: {
                   1981:     return io_mem_read[io_index >> IO_MEM_SHIFT];
                   1982: }
                   1983: 
                   1984: /* physical memory access (slow version, mainly for debug) */
                   1985: #if defined(CONFIG_USER_ONLY)
                   1986: void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, 
                   1987:                             int len, int is_write)
                   1988: {
                   1989:     int l, flags;
                   1990:     target_ulong page;
1.1.1.3   root     1991:     void * p;
1.1       root     1992: 
                   1993:     while (len > 0) {
                   1994:         page = addr & TARGET_PAGE_MASK;
                   1995:         l = (page + TARGET_PAGE_SIZE) - addr;
                   1996:         if (l > len)
                   1997:             l = len;
                   1998:         flags = page_get_flags(page);
                   1999:         if (!(flags & PAGE_VALID))
                   2000:             return;
                   2001:         if (is_write) {
                   2002:             if (!(flags & PAGE_WRITE))
                   2003:                 return;
1.1.1.3   root     2004:             p = lock_user(addr, len, 0);
                   2005:             memcpy(p, buf, len);
                   2006:             unlock_user(p, addr, len);
1.1       root     2007:         } else {
                   2008:             if (!(flags & PAGE_READ))
                   2009:                 return;
1.1.1.3   root     2010:             p = lock_user(addr, len, 1);
                   2011:             memcpy(buf, p, len);
                   2012:             unlock_user(p, addr, 0);
1.1       root     2013:         }
                   2014:         len -= l;
                   2015:         buf += l;
                   2016:         addr += l;
                   2017:     }
                   2018: }
                   2019: 
                   2020: #else
                   2021: void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, 
                   2022:                             int len, int is_write)
                   2023: {
                   2024:     int l, io_index;
                   2025:     uint8_t *ptr;
                   2026:     uint32_t val;
                   2027:     target_phys_addr_t page;
                   2028:     unsigned long pd;
                   2029:     PhysPageDesc *p;
                   2030:     
                   2031:     while (len > 0) {
                   2032:         page = addr & TARGET_PAGE_MASK;
                   2033:         l = (page + TARGET_PAGE_SIZE) - addr;
                   2034:         if (l > len)
                   2035:             l = len;
                   2036:         p = phys_page_find(page >> TARGET_PAGE_BITS);
                   2037:         if (!p) {
                   2038:             pd = IO_MEM_UNASSIGNED;
                   2039:         } else {
                   2040:             pd = p->phys_offset;
                   2041:         }
                   2042:         
                   2043:         if (is_write) {
                   2044:             if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
                   2045:                 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
1.1.1.2   root     2046:                 /* XXX: could force cpu_single_env to NULL to avoid
                   2047:                    potential bugs */
1.1       root     2048:                 if (l >= 4 && ((addr & 3) == 0)) {
                   2049:                     /* 32 bit write access */
                   2050:                     val = ldl_p(buf);
                   2051:                     io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
                   2052:                     l = 4;
                   2053:                 } else if (l >= 2 && ((addr & 1) == 0)) {
                   2054:                     /* 16 bit write access */
                   2055:                     val = lduw_p(buf);
                   2056:                     io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
                   2057:                     l = 2;
                   2058:                 } else {
                   2059:                     /* 8 bit write access */
                   2060:                     val = ldub_p(buf);
                   2061:                     io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
                   2062:                     l = 1;
                   2063:                 }
                   2064:             } else {
                   2065:                 unsigned long addr1;
                   2066:                 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
                   2067:                 /* RAM case */
                   2068:                 ptr = phys_ram_base + addr1;
                   2069:                 memcpy(ptr, buf, l);
                   2070:                 if (!cpu_physical_memory_is_dirty(addr1)) {
                   2071:                     /* invalidate code */
                   2072:                     tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
                   2073:                     /* set dirty bit */
                   2074:                     phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= 
                   2075:                         (0xff & ~CODE_DIRTY_FLAG);
                   2076:                 }
                   2077:             }
                   2078:         } else {
1.1.1.4   root     2079:             if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && 
                   2080:                 !(pd & IO_MEM_ROMD)) {
1.1       root     2081:                 /* I/O case */
                   2082:                 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
                   2083:                 if (l >= 4 && ((addr & 3) == 0)) {
                   2084:                     /* 32 bit read access */
                   2085:                     val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
                   2086:                     stl_p(buf, val);
                   2087:                     l = 4;
                   2088:                 } else if (l >= 2 && ((addr & 1) == 0)) {
                   2089:                     /* 16 bit read access */
                   2090:                     val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
                   2091:                     stw_p(buf, val);
                   2092:                     l = 2;
                   2093:                 } else {
                   2094:                     /* 8 bit read access */
                   2095:                     val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
                   2096:                     stb_p(buf, val);
                   2097:                     l = 1;
                   2098:                 }
                   2099:             } else {
                   2100:                 /* RAM case */
                   2101:                 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + 
                   2102:                     (addr & ~TARGET_PAGE_MASK);
                   2103:                 memcpy(buf, ptr, l);
                   2104:             }
                   2105:         }
                   2106:         len -= l;
                   2107:         buf += l;
                   2108:         addr += l;
                   2109:     }
                   2110: }
                   2111: 
1.1.1.3   root     2112: /* used for ROM loading : can write in RAM and ROM */
                   2113: void cpu_physical_memory_write_rom(target_phys_addr_t addr, 
                   2114:                                    const uint8_t *buf, int len)
                   2115: {
                   2116:     int l;
                   2117:     uint8_t *ptr;
                   2118:     target_phys_addr_t page;
                   2119:     unsigned long pd;
                   2120:     PhysPageDesc *p;
                   2121:     
                   2122:     while (len > 0) {
                   2123:         page = addr & TARGET_PAGE_MASK;
                   2124:         l = (page + TARGET_PAGE_SIZE) - addr;
                   2125:         if (l > len)
                   2126:             l = len;
                   2127:         p = phys_page_find(page >> TARGET_PAGE_BITS);
                   2128:         if (!p) {
                   2129:             pd = IO_MEM_UNASSIGNED;
                   2130:         } else {
                   2131:             pd = p->phys_offset;
                   2132:         }
                   2133:         
                   2134:         if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
1.1.1.4   root     2135:             (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
                   2136:             !(pd & IO_MEM_ROMD)) {
1.1.1.3   root     2137:             /* do nothing */
                   2138:         } else {
                   2139:             unsigned long addr1;
                   2140:             addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
                   2141:             /* ROM/RAM case */
                   2142:             ptr = phys_ram_base + addr1;
                   2143:             memcpy(ptr, buf, l);
                   2144:         }
                   2145:         len -= l;
                   2146:         buf += l;
                   2147:         addr += l;
                   2148:     }
                   2149: }
                   2150: 
                   2151: 
1.1       root     2152: /* warning: addr must be aligned */
                   2153: uint32_t ldl_phys(target_phys_addr_t addr)
                   2154: {
                   2155:     int io_index;
                   2156:     uint8_t *ptr;
                   2157:     uint32_t val;
                   2158:     unsigned long pd;
                   2159:     PhysPageDesc *p;
                   2160: 
                   2161:     p = phys_page_find(addr >> TARGET_PAGE_BITS);
                   2162:     if (!p) {
                   2163:         pd = IO_MEM_UNASSIGNED;
                   2164:     } else {
                   2165:         pd = p->phys_offset;
                   2166:     }
                   2167:         
1.1.1.4   root     2168:     if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && 
                   2169:         !(pd & IO_MEM_ROMD)) {
1.1       root     2170:         /* I/O case */
                   2171:         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
                   2172:         val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
                   2173:     } else {
                   2174:         /* RAM case */
                   2175:         ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + 
                   2176:             (addr & ~TARGET_PAGE_MASK);
                   2177:         val = ldl_p(ptr);
                   2178:     }
                   2179:     return val;
                   2180: }
                   2181: 
1.1.1.2   root     2182: /* warning: addr must be aligned */
                   2183: uint64_t ldq_phys(target_phys_addr_t addr)
                   2184: {
                   2185:     int io_index;
                   2186:     uint8_t *ptr;
                   2187:     uint64_t val;
                   2188:     unsigned long pd;
                   2189:     PhysPageDesc *p;
                   2190: 
                   2191:     p = phys_page_find(addr >> TARGET_PAGE_BITS);
                   2192:     if (!p) {
                   2193:         pd = IO_MEM_UNASSIGNED;
                   2194:     } else {
                   2195:         pd = p->phys_offset;
                   2196:     }
                   2197:         
1.1.1.4   root     2198:     if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
                   2199:         !(pd & IO_MEM_ROMD)) {
1.1.1.2   root     2200:         /* I/O case */
                   2201:         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
                   2202: #ifdef TARGET_WORDS_BIGENDIAN
                   2203:         val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
                   2204:         val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
                   2205: #else
                   2206:         val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
                   2207:         val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
                   2208: #endif
                   2209:     } else {
                   2210:         /* RAM case */
                   2211:         ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + 
                   2212:             (addr & ~TARGET_PAGE_MASK);
                   2213:         val = ldq_p(ptr);
                   2214:     }
                   2215:     return val;
                   2216: }
                   2217: 
                   2218: /* XXX: optimize */
                   2219: uint32_t ldub_phys(target_phys_addr_t addr)
                   2220: {
                   2221:     uint8_t val;
                   2222:     cpu_physical_memory_read(addr, &val, 1);
                   2223:     return val;
                   2224: }
                   2225: 
                   2226: /* XXX: optimize */
                   2227: uint32_t lduw_phys(target_phys_addr_t addr)
                   2228: {
                   2229:     uint16_t val;
                   2230:     cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
                   2231:     return tswap16(val);
                   2232: }
                   2233: 
1.1       root     2234: /* warning: addr must be aligned. The ram page is not masked as dirty
                   2235:    and the code inside is not invalidated. It is useful if the dirty
                   2236:    bits are used to track modified PTEs */
                   2237: void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
                   2238: {
                   2239:     int io_index;
                   2240:     uint8_t *ptr;
                   2241:     unsigned long pd;
                   2242:     PhysPageDesc *p;
                   2243: 
                   2244:     p = phys_page_find(addr >> TARGET_PAGE_BITS);
                   2245:     if (!p) {
                   2246:         pd = IO_MEM_UNASSIGNED;
                   2247:     } else {
                   2248:         pd = p->phys_offset;
                   2249:     }
                   2250:         
                   2251:     if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
                   2252:         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
                   2253:         io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
                   2254:     } else {
                   2255:         ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + 
                   2256:             (addr & ~TARGET_PAGE_MASK);
                   2257:         stl_p(ptr, val);
                   2258:     }
                   2259: }
                   2260: 
                   2261: /* warning: addr must be aligned */
                   2262: void stl_phys(target_phys_addr_t addr, uint32_t val)
                   2263: {
                   2264:     int io_index;
                   2265:     uint8_t *ptr;
                   2266:     unsigned long pd;
                   2267:     PhysPageDesc *p;
                   2268: 
                   2269:     p = phys_page_find(addr >> TARGET_PAGE_BITS);
                   2270:     if (!p) {
                   2271:         pd = IO_MEM_UNASSIGNED;
                   2272:     } else {
                   2273:         pd = p->phys_offset;
                   2274:     }
                   2275:         
                   2276:     if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
                   2277:         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
                   2278:         io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
                   2279:     } else {
                   2280:         unsigned long addr1;
                   2281:         addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
                   2282:         /* RAM case */
                   2283:         ptr = phys_ram_base + addr1;
                   2284:         stl_p(ptr, val);
                   2285:         if (!cpu_physical_memory_is_dirty(addr1)) {
                   2286:             /* invalidate code */
                   2287:             tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
                   2288:             /* set dirty bit */
                   2289:             phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
                   2290:                 (0xff & ~CODE_DIRTY_FLAG);
                   2291:         }
                   2292:     }
                   2293: }
                   2294: 
1.1.1.2   root     2295: /* XXX: optimize */
                   2296: void stb_phys(target_phys_addr_t addr, uint32_t val)
                   2297: {
                   2298:     uint8_t v = val;
                   2299:     cpu_physical_memory_write(addr, &v, 1);
                   2300: }
                   2301: 
                   2302: /* XXX: optimize */
                   2303: void stw_phys(target_phys_addr_t addr, uint32_t val)
                   2304: {
                   2305:     uint16_t v = tswap16(val);
                   2306:     cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
                   2307: }
                   2308: 
                   2309: /* XXX: optimize */
                   2310: void stq_phys(target_phys_addr_t addr, uint64_t val)
                   2311: {
                   2312:     val = tswap64(val);
                   2313:     cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
                   2314: }
                   2315: 
1.1       root     2316: #endif
                   2317: 
                   2318: /* virtual memory access for debug */
                   2319: int cpu_memory_rw_debug(CPUState *env, target_ulong addr, 
                   2320:                         uint8_t *buf, int len, int is_write)
                   2321: {
                   2322:     int l;
                   2323:     target_ulong page, phys_addr;
                   2324: 
                   2325:     while (len > 0) {
                   2326:         page = addr & TARGET_PAGE_MASK;
                   2327:         phys_addr = cpu_get_phys_page_debug(env, page);
                   2328:         /* if no physical page mapped, return an error */
                   2329:         if (phys_addr == -1)
                   2330:             return -1;
                   2331:         l = (page + TARGET_PAGE_SIZE) - addr;
                   2332:         if (l > len)
                   2333:             l = len;
                   2334:         cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK), 
                   2335:                                buf, l, is_write);
                   2336:         len -= l;
                   2337:         buf += l;
                   2338:         addr += l;
                   2339:     }
                   2340:     return 0;
                   2341: }
                   2342: 
                   2343: void dump_exec_info(FILE *f,
                   2344:                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
                   2345: {
                   2346:     int i, target_code_size, max_target_code_size;
                   2347:     int direct_jmp_count, direct_jmp2_count, cross_page;
                   2348:     TranslationBlock *tb;
                   2349:     
                   2350:     target_code_size = 0;
                   2351:     max_target_code_size = 0;
                   2352:     cross_page = 0;
                   2353:     direct_jmp_count = 0;
                   2354:     direct_jmp2_count = 0;
                   2355:     for(i = 0; i < nb_tbs; i++) {
                   2356:         tb = &tbs[i];
                   2357:         target_code_size += tb->size;
                   2358:         if (tb->size > max_target_code_size)
                   2359:             max_target_code_size = tb->size;
                   2360:         if (tb->page_addr[1] != -1)
                   2361:             cross_page++;
                   2362:         if (tb->tb_next_offset[0] != 0xffff) {
                   2363:             direct_jmp_count++;
                   2364:             if (tb->tb_next_offset[1] != 0xffff) {
                   2365:                 direct_jmp2_count++;
                   2366:             }
                   2367:         }
                   2368:     }
                   2369:     /* XXX: avoid using doubles ? */
                   2370:     cpu_fprintf(f, "TB count            %d\n", nb_tbs);
                   2371:     cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n", 
                   2372:                 nb_tbs ? target_code_size / nb_tbs : 0,
                   2373:                 max_target_code_size);
                   2374:     cpu_fprintf(f, "TB avg host size    %d bytes (expansion ratio: %0.1f)\n", 
                   2375:                 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
                   2376:                 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
                   2377:     cpu_fprintf(f, "cross page TB count %d (%d%%)\n", 
                   2378:             cross_page, 
                   2379:             nb_tbs ? (cross_page * 100) / nb_tbs : 0);
                   2380:     cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                   2381:                 direct_jmp_count, 
                   2382:                 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
                   2383:                 direct_jmp2_count,
                   2384:                 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
                   2385:     cpu_fprintf(f, "TB flush count      %d\n", tb_flush_count);
                   2386:     cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
                   2387:     cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
                   2388: }
                   2389: 
                   2390: #if !defined(CONFIG_USER_ONLY) 
                   2391: 
                   2392: #define MMUSUFFIX _cmmu
                   2393: #define GETPC() NULL
                   2394: #define env cpu_single_env
                   2395: #define SOFTMMU_CODE_ACCESS
                   2396: 
                   2397: #define SHIFT 0
                   2398: #include "softmmu_template.h"
                   2399: 
                   2400: #define SHIFT 1
                   2401: #include "softmmu_template.h"
                   2402: 
                   2403: #define SHIFT 2
                   2404: #include "softmmu_template.h"
                   2405: 
                   2406: #define SHIFT 3
                   2407: #include "softmmu_template.h"
                   2408: 
                   2409: #undef env
                   2410: 
                   2411: #endif

unix.superglobalmegacorp.com