Annotation of qemu/hw/armv7m.c, revision 1.1.1.3
1.1 root 1: /*
2: * ARMV7M System emulation.
3: *
4: * Copyright (c) 2006-2007 CodeSourcery.
5: * Written by Paul Brook
6: *
7: * This code is licenced under the GPL.
8: */
9:
1.1.1.3 ! root 10: #include "sysbus.h"
1.1 root 11: #include "arm-misc.h"
12: #include "sysemu.h"
13:
14: /* Bitbanded IO. Each word corresponds to a single bit. */
15:
16: /* Get the byte address of the real memory for a bitband acess. */
1.1.1.2 root 17: static inline uint32_t bitband_addr(void * opaque, uint32_t addr)
1.1 root 18: {
19: uint32_t res;
20:
1.1.1.2 root 21: res = *(uint32_t *)opaque;
1.1 root 22: res |= (addr & 0x1ffffff) >> 5;
23: return res;
24:
25: }
26:
27: static uint32_t bitband_readb(void *opaque, target_phys_addr_t offset)
28: {
29: uint8_t v;
1.1.1.2 root 30: cpu_physical_memory_read(bitband_addr(opaque, offset), &v, 1);
1.1 root 31: return (v & (1 << ((offset >> 2) & 7))) != 0;
32: }
33:
34: static void bitband_writeb(void *opaque, target_phys_addr_t offset,
35: uint32_t value)
36: {
37: uint32_t addr;
38: uint8_t mask;
39: uint8_t v;
1.1.1.2 root 40: addr = bitband_addr(opaque, offset);
1.1 root 41: mask = (1 << ((offset >> 2) & 7));
42: cpu_physical_memory_read(addr, &v, 1);
43: if (value & 1)
44: v |= mask;
45: else
46: v &= ~mask;
47: cpu_physical_memory_write(addr, &v, 1);
48: }
49:
50: static uint32_t bitband_readw(void *opaque, target_phys_addr_t offset)
51: {
52: uint32_t addr;
53: uint16_t mask;
54: uint16_t v;
1.1.1.2 root 55: addr = bitband_addr(opaque, offset) & ~1;
1.1 root 56: mask = (1 << ((offset >> 2) & 15));
57: mask = tswap16(mask);
58: cpu_physical_memory_read(addr, (uint8_t *)&v, 2);
59: return (v & mask) != 0;
60: }
61:
62: static void bitband_writew(void *opaque, target_phys_addr_t offset,
63: uint32_t value)
64: {
65: uint32_t addr;
66: uint16_t mask;
67: uint16_t v;
1.1.1.2 root 68: addr = bitband_addr(opaque, offset) & ~1;
1.1 root 69: mask = (1 << ((offset >> 2) & 15));
70: mask = tswap16(mask);
71: cpu_physical_memory_read(addr, (uint8_t *)&v, 2);
72: if (value & 1)
73: v |= mask;
74: else
75: v &= ~mask;
76: cpu_physical_memory_write(addr, (uint8_t *)&v, 2);
77: }
78:
79: static uint32_t bitband_readl(void *opaque, target_phys_addr_t offset)
80: {
81: uint32_t addr;
82: uint32_t mask;
83: uint32_t v;
1.1.1.2 root 84: addr = bitband_addr(opaque, offset) & ~3;
1.1 root 85: mask = (1 << ((offset >> 2) & 31));
86: mask = tswap32(mask);
87: cpu_physical_memory_read(addr, (uint8_t *)&v, 4);
88: return (v & mask) != 0;
89: }
90:
91: static void bitband_writel(void *opaque, target_phys_addr_t offset,
92: uint32_t value)
93: {
94: uint32_t addr;
95: uint32_t mask;
96: uint32_t v;
1.1.1.2 root 97: addr = bitband_addr(opaque, offset) & ~3;
1.1 root 98: mask = (1 << ((offset >> 2) & 31));
99: mask = tswap32(mask);
100: cpu_physical_memory_read(addr, (uint8_t *)&v, 4);
101: if (value & 1)
102: v |= mask;
103: else
104: v &= ~mask;
105: cpu_physical_memory_write(addr, (uint8_t *)&v, 4);
106: }
107:
108: static CPUReadMemoryFunc *bitband_readfn[] = {
109: bitband_readb,
110: bitband_readw,
111: bitband_readl
112: };
113:
114: static CPUWriteMemoryFunc *bitband_writefn[] = {
115: bitband_writeb,
116: bitband_writew,
117: bitband_writel
118: };
119:
1.1.1.3 ! root 120: typedef struct {
! 121: SysBusDevice busdev;
! 122: uint32_t base;
! 123: } BitBandState;
! 124:
! 125: static void bitband_init(SysBusDevice *dev)
1.1 root 126: {
1.1.1.3 ! root 127: BitBandState *s = FROM_SYSBUS(BitBandState, dev);
1.1 root 128: int iomemtype;
129:
1.1.1.3 ! root 130: iomemtype = cpu_register_io_memory(bitband_readfn, bitband_writefn,
! 131: &s->base);
! 132: sysbus_init_mmio(dev, 0x02000000, iomemtype);
! 133: }
! 134:
! 135: static void armv7m_bitband_init(void)
! 136: {
! 137: DeviceState *dev;
! 138:
! 139: dev = qdev_create(NULL, "ARM,bitband-memory");
! 140: qdev_prop_set_uint32(dev, "base", 0x20000000);
! 141: qdev_init(dev);
! 142: sysbus_mmio_map(sysbus_from_qdev(dev), 0, 0x22000000);
! 143:
! 144: dev = qdev_create(NULL, "ARM,bitband-memory");
! 145: qdev_prop_set_uint32(dev, "base", 0x40000000);
! 146: qdev_init(dev);
! 147: sysbus_mmio_map(sysbus_from_qdev(dev), 0, 0x42000000);
1.1 root 148: }
149:
150: /* Board init. */
151: /* Init CPU and memory for a v7-M based board.
152: flash_size and sram_size are in kb.
153: Returns the NVIC array. */
154:
155: qemu_irq *armv7m_init(int flash_size, int sram_size,
156: const char *kernel_filename, const char *cpu_model)
157: {
158: CPUState *env;
1.1.1.3 ! root 159: DeviceState *nvic;
! 160: /* FIXME: make this local state. */
! 161: static qemu_irq pic[64];
! 162: qemu_irq *cpu_pic;
1.1 root 163: uint32_t pc;
164: int image_size;
165: uint64_t entry;
166: uint64_t lowaddr;
1.1.1.3 ! root 167: int i;
1.1 root 168:
169: flash_size *= 1024;
170: sram_size *= 1024;
171:
172: if (!cpu_model)
173: cpu_model = "cortex-m3";
174: env = cpu_init(cpu_model);
175: if (!env) {
176: fprintf(stderr, "Unable to find CPU definition\n");
177: exit(1);
178: }
179:
180: #if 0
181: /* > 32Mb SRAM gets complicated because it overlaps the bitband area.
182: We don't have proper commandline options, so allocate half of memory
183: as SRAM, up to a maximum of 32Mb, and the rest as code. */
184: if (ram_size > (512 + 32) * 1024 * 1024)
185: ram_size = (512 + 32) * 1024 * 1024;
186: sram_size = (ram_size / 2) & TARGET_PAGE_MASK;
187: if (sram_size > 32 * 1024 * 1024)
188: sram_size = 32 * 1024 * 1024;
189: code_size = ram_size - sram_size;
190: #endif
191:
192: /* Flash programming is done via the SCU, so pretend it is ROM. */
1.1.1.3 ! root 193: cpu_register_physical_memory(0, flash_size,
! 194: qemu_ram_alloc(flash_size) | IO_MEM_ROM);
1.1 root 195: cpu_register_physical_memory(0x20000000, sram_size,
1.1.1.3 ! root 196: qemu_ram_alloc(sram_size) | IO_MEM_RAM);
1.1 root 197: armv7m_bitband_init();
198:
1.1.1.3 ! root 199: nvic = qdev_create(NULL, "armv7m_nvic");
! 200: env->v7m.nvic = nvic;
! 201: qdev_init(nvic);
! 202: cpu_pic = arm_pic_init_cpu(env);
! 203: sysbus_connect_irq(sysbus_from_qdev(nvic), 0, cpu_pic[ARM_PIC_CPU_IRQ]);
! 204: for (i = 0; i < 64; i++) {
! 205: pic[i] = qdev_get_gpio_in(nvic, i);
! 206: }
1.1 root 207:
208: image_size = load_elf(kernel_filename, 0, &entry, &lowaddr, NULL);
209: if (image_size < 0) {
1.1.1.3 ! root 210: image_size = load_image_targphys(kernel_filename, 0, flash_size);
1.1 root 211: lowaddr = 0;
212: }
213: if (image_size < 0) {
214: fprintf(stderr, "qemu: could not load kernel '%s'\n",
215: kernel_filename);
216: exit(1);
217: }
218:
219: /* If the image was loaded at address zero then assume it is a
220: regular ROM image and perform the normal CPU reset sequence.
221: Otherwise jump directly to the entry point. */
222: if (lowaddr == 0) {
1.1.1.3 ! root 223: env->regs[13] = ldl_phys(0);
! 224: pc = ldl_phys(4);
1.1 root 225: } else {
226: pc = entry;
227: }
228: env->thumb = pc & 1;
229: env->regs[15] = pc & ~1;
230:
231: /* Hack to map an additional page of ram at the top of the address
232: space. This stops qemu complaining about executing code outside RAM
233: when returning from an exception. */
1.1.1.3 ! root 234: cpu_register_physical_memory(0xfffff000, 0x1000,
! 235: qemu_ram_alloc(0x1000) | IO_MEM_RAM);
1.1 root 236:
237: return pic;
238: }
1.1.1.3 ! root 239:
! 240: static SysBusDeviceInfo bitband_info = {
! 241: .init = bitband_init,
! 242: .qdev.name = "ARM,bitband-memory",
! 243: .qdev.size = sizeof(BitBandState),
! 244: .qdev.props = (Property[]) {
! 245: {
! 246: .name = "base",
! 247: .info = &qdev_prop_hex32,
! 248: .offset = offsetof(BitBandState, base),
! 249: },
! 250: {/* end of list */}
! 251: }
! 252: };
! 253:
! 254: static void armv7m_register_devices(void)
! 255: {
! 256: sysbus_register_withprop(&bitband_info);
! 257: }
! 258:
! 259: device_init(armv7m_register_devices)
unix.superglobalmegacorp.com