Annotation of qemu/hw/armv7m.c, revision 1.1.1.7
1.1 root 1: /*
2: * ARMV7M System emulation.
3: *
4: * Copyright (c) 2006-2007 CodeSourcery.
5: * Written by Paul Brook
6: *
1.1.1.7 ! root 7: * This code is licensed under the GPL.
1.1 root 8: */
9:
1.1.1.3 root 10: #include "sysbus.h"
1.1 root 11: #include "arm-misc.h"
1.1.1.4 root 12: #include "loader.h"
13: #include "elf.h"
1.1 root 14:
15: /* Bitbanded IO. Each word corresponds to a single bit. */
16:
1.1.1.7 ! root 17: /* Get the byte address of the real memory for a bitband access. */
1.1.1.2 root 18: static inline uint32_t bitband_addr(void * opaque, uint32_t addr)
1.1 root 19: {
20: uint32_t res;
21:
1.1.1.2 root 22: res = *(uint32_t *)opaque;
1.1 root 23: res |= (addr & 0x1ffffff) >> 5;
24: return res;
25:
26: }
27:
28: static uint32_t bitband_readb(void *opaque, target_phys_addr_t offset)
29: {
30: uint8_t v;
1.1.1.2 root 31: cpu_physical_memory_read(bitband_addr(opaque, offset), &v, 1);
1.1 root 32: return (v & (1 << ((offset >> 2) & 7))) != 0;
33: }
34:
35: static void bitband_writeb(void *opaque, target_phys_addr_t offset,
36: uint32_t value)
37: {
38: uint32_t addr;
39: uint8_t mask;
40: uint8_t v;
1.1.1.2 root 41: addr = bitband_addr(opaque, offset);
1.1 root 42: mask = (1 << ((offset >> 2) & 7));
43: cpu_physical_memory_read(addr, &v, 1);
44: if (value & 1)
45: v |= mask;
46: else
47: v &= ~mask;
48: cpu_physical_memory_write(addr, &v, 1);
49: }
50:
51: static uint32_t bitband_readw(void *opaque, target_phys_addr_t offset)
52: {
53: uint32_t addr;
54: uint16_t mask;
55: uint16_t v;
1.1.1.2 root 56: addr = bitband_addr(opaque, offset) & ~1;
1.1 root 57: mask = (1 << ((offset >> 2) & 15));
58: mask = tswap16(mask);
59: cpu_physical_memory_read(addr, (uint8_t *)&v, 2);
60: return (v & mask) != 0;
61: }
62:
63: static void bitband_writew(void *opaque, target_phys_addr_t offset,
64: uint32_t value)
65: {
66: uint32_t addr;
67: uint16_t mask;
68: uint16_t v;
1.1.1.2 root 69: addr = bitband_addr(opaque, offset) & ~1;
1.1 root 70: mask = (1 << ((offset >> 2) & 15));
71: mask = tswap16(mask);
72: cpu_physical_memory_read(addr, (uint8_t *)&v, 2);
73: if (value & 1)
74: v |= mask;
75: else
76: v &= ~mask;
77: cpu_physical_memory_write(addr, (uint8_t *)&v, 2);
78: }
79:
80: static uint32_t bitband_readl(void *opaque, target_phys_addr_t offset)
81: {
82: uint32_t addr;
83: uint32_t mask;
84: uint32_t v;
1.1.1.2 root 85: addr = bitband_addr(opaque, offset) & ~3;
1.1 root 86: mask = (1 << ((offset >> 2) & 31));
87: mask = tswap32(mask);
88: cpu_physical_memory_read(addr, (uint8_t *)&v, 4);
89: return (v & mask) != 0;
90: }
91:
92: static void bitband_writel(void *opaque, target_phys_addr_t offset,
93: uint32_t value)
94: {
95: uint32_t addr;
96: uint32_t mask;
97: uint32_t v;
1.1.1.2 root 98: addr = bitband_addr(opaque, offset) & ~3;
1.1 root 99: mask = (1 << ((offset >> 2) & 31));
100: mask = tswap32(mask);
101: cpu_physical_memory_read(addr, (uint8_t *)&v, 4);
102: if (value & 1)
103: v |= mask;
104: else
105: v &= ~mask;
106: cpu_physical_memory_write(addr, (uint8_t *)&v, 4);
107: }
108:
1.1.1.4 root 109: static CPUReadMemoryFunc * const bitband_readfn[] = {
1.1 root 110: bitband_readb,
111: bitband_readw,
112: bitband_readl
113: };
114:
1.1.1.4 root 115: static CPUWriteMemoryFunc * const bitband_writefn[] = {
1.1 root 116: bitband_writeb,
117: bitband_writew,
118: bitband_writel
119: };
120:
1.1.1.3 root 121: typedef struct {
122: SysBusDevice busdev;
123: uint32_t base;
124: } BitBandState;
125:
1.1.1.4 root 126: static int bitband_init(SysBusDevice *dev)
1.1 root 127: {
1.1.1.3 root 128: BitBandState *s = FROM_SYSBUS(BitBandState, dev);
1.1 root 129: int iomemtype;
130:
1.1.1.3 root 131: iomemtype = cpu_register_io_memory(bitband_readfn, bitband_writefn,
1.1.1.6 root 132: &s->base, DEVICE_NATIVE_ENDIAN);
1.1.1.3 root 133: sysbus_init_mmio(dev, 0x02000000, iomemtype);
1.1.1.4 root 134: return 0;
1.1.1.3 root 135: }
136:
137: static void armv7m_bitband_init(void)
138: {
139: DeviceState *dev;
140:
141: dev = qdev_create(NULL, "ARM,bitband-memory");
142: qdev_prop_set_uint32(dev, "base", 0x20000000);
1.1.1.4 root 143: qdev_init_nofail(dev);
1.1.1.3 root 144: sysbus_mmio_map(sysbus_from_qdev(dev), 0, 0x22000000);
145:
146: dev = qdev_create(NULL, "ARM,bitband-memory");
147: qdev_prop_set_uint32(dev, "base", 0x40000000);
1.1.1.4 root 148: qdev_init_nofail(dev);
1.1.1.3 root 149: sysbus_mmio_map(sysbus_from_qdev(dev), 0, 0x42000000);
1.1 root 150: }
151:
152: /* Board init. */
1.1.1.5 root 153:
154: static void armv7m_reset(void *opaque)
155: {
156: cpu_reset((CPUState *)opaque);
157: }
158:
1.1 root 159: /* Init CPU and memory for a v7-M based board.
160: flash_size and sram_size are in kb.
161: Returns the NVIC array. */
162:
163: qemu_irq *armv7m_init(int flash_size, int sram_size,
164: const char *kernel_filename, const char *cpu_model)
165: {
166: CPUState *env;
1.1.1.3 root 167: DeviceState *nvic;
168: /* FIXME: make this local state. */
169: static qemu_irq pic[64];
170: qemu_irq *cpu_pic;
1.1 root 171: int image_size;
172: uint64_t entry;
173: uint64_t lowaddr;
1.1.1.3 root 174: int i;
1.1.1.4 root 175: int big_endian;
1.1 root 176:
177: flash_size *= 1024;
178: sram_size *= 1024;
179:
180: if (!cpu_model)
181: cpu_model = "cortex-m3";
182: env = cpu_init(cpu_model);
183: if (!env) {
184: fprintf(stderr, "Unable to find CPU definition\n");
185: exit(1);
186: }
187:
188: #if 0
189: /* > 32Mb SRAM gets complicated because it overlaps the bitband area.
190: We don't have proper commandline options, so allocate half of memory
191: as SRAM, up to a maximum of 32Mb, and the rest as code. */
192: if (ram_size > (512 + 32) * 1024 * 1024)
193: ram_size = (512 + 32) * 1024 * 1024;
194: sram_size = (ram_size / 2) & TARGET_PAGE_MASK;
195: if (sram_size > 32 * 1024 * 1024)
196: sram_size = 32 * 1024 * 1024;
197: code_size = ram_size - sram_size;
198: #endif
199:
200: /* Flash programming is done via the SCU, so pretend it is ROM. */
1.1.1.3 root 201: cpu_register_physical_memory(0, flash_size,
1.1.1.5 root 202: qemu_ram_alloc(NULL, "armv7m.flash",
203: flash_size) | IO_MEM_ROM);
1.1 root 204: cpu_register_physical_memory(0x20000000, sram_size,
1.1.1.5 root 205: qemu_ram_alloc(NULL, "armv7m.sram",
206: sram_size) | IO_MEM_RAM);
1.1 root 207: armv7m_bitband_init();
208:
1.1.1.3 root 209: nvic = qdev_create(NULL, "armv7m_nvic");
1.1.1.5 root 210: env->nvic = nvic;
1.1.1.4 root 211: qdev_init_nofail(nvic);
1.1.1.3 root 212: cpu_pic = arm_pic_init_cpu(env);
213: sysbus_connect_irq(sysbus_from_qdev(nvic), 0, cpu_pic[ARM_PIC_CPU_IRQ]);
214: for (i = 0; i < 64; i++) {
215: pic[i] = qdev_get_gpio_in(nvic, i);
216: }
1.1 root 217:
1.1.1.4 root 218: #ifdef TARGET_WORDS_BIGENDIAN
219: big_endian = 1;
220: #else
221: big_endian = 0;
222: #endif
223:
1.1.1.5 root 224: image_size = load_elf(kernel_filename, NULL, NULL, &entry, &lowaddr,
225: NULL, big_endian, ELF_MACHINE, 1);
1.1 root 226: if (image_size < 0) {
1.1.1.3 root 227: image_size = load_image_targphys(kernel_filename, 0, flash_size);
1.1 root 228: lowaddr = 0;
229: }
230: if (image_size < 0) {
231: fprintf(stderr, "qemu: could not load kernel '%s'\n",
232: kernel_filename);
233: exit(1);
234: }
235:
236: /* Hack to map an additional page of ram at the top of the address
237: space. This stops qemu complaining about executing code outside RAM
238: when returning from an exception. */
1.1.1.3 root 239: cpu_register_physical_memory(0xfffff000, 0x1000,
1.1.1.5 root 240: qemu_ram_alloc(NULL, "armv7m.hack",
241: 0x1000) | IO_MEM_RAM);
1.1 root 242:
1.1.1.5 root 243: qemu_register_reset(armv7m_reset, env);
1.1 root 244: return pic;
245: }
1.1.1.3 root 246:
247: static SysBusDeviceInfo bitband_info = {
248: .init = bitband_init,
249: .qdev.name = "ARM,bitband-memory",
250: .qdev.size = sizeof(BitBandState),
251: .qdev.props = (Property[]) {
1.1.1.4 root 252: DEFINE_PROP_UINT32("base", BitBandState, base, 0),
253: DEFINE_PROP_END_OF_LIST(),
1.1.1.3 root 254: }
255: };
256:
257: static void armv7m_register_devices(void)
258: {
259: sysbus_register_withprop(&bitband_info);
260: }
261:
262: device_init(armv7m_register_devices)
unix.superglobalmegacorp.com