Diff for /qemu/qemu-timer.c between versions 1.1.1.3 and 1.1.1.4

version 1.1.1.3, 2018/04/24 18:56:13 version 1.1.1.4, 2018/04/24 19:17:17
Line 46 Line 46
   
 #include "qemu-timer.h"  #include "qemu-timer.h"
   
 /* Conversion factor from emulated instructions to virtual clock ticks.  */  
 int icount_time_shift;  
 /* Arbitrarily pick 1MIPS as the minimum allowable speed.  */  
 #define MAX_ICOUNT_SHIFT 10  
 /* Compensate for varying guest execution speed.  */  
 int64_t qemu_icount_bias;  
 static QEMUTimer *icount_rt_timer;  
 static QEMUTimer *icount_vm_timer;  
   
 /***********************************************************/  
 /* guest cycle counter */  
   
 typedef struct TimersState {  
     int64_t cpu_ticks_prev;  
     int64_t cpu_ticks_offset;  
     int64_t cpu_clock_offset;  
     int32_t cpu_ticks_enabled;  
     int64_t dummy;  
 } TimersState;  
   
 TimersState timers_state;  
   
 /* return the host CPU cycle counter and handle stop/restart */  
 int64_t cpu_get_ticks(void)  
 {  
     if (use_icount) {  
         return cpu_get_icount();  
     }  
     if (!timers_state.cpu_ticks_enabled) {  
         return timers_state.cpu_ticks_offset;  
     } else {  
         int64_t ticks;  
         ticks = cpu_get_real_ticks();  
         if (timers_state.cpu_ticks_prev > ticks) {  
             /* Note: non increasing ticks may happen if the host uses  
                software suspend */  
             timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;  
         }  
         timers_state.cpu_ticks_prev = ticks;  
         return ticks + timers_state.cpu_ticks_offset;  
     }  
 }  
   
 /* return the host CPU monotonic timer and handle stop/restart */  
 static int64_t cpu_get_clock(void)  
 {  
     int64_t ti;  
     if (!timers_state.cpu_ticks_enabled) {  
         return timers_state.cpu_clock_offset;  
     } else {  
         ti = get_clock();  
         return ti + timers_state.cpu_clock_offset;  
     }  
 }  
   
 #ifndef CONFIG_IOTHREAD  
 static int64_t qemu_icount_delta(void)  
 {  
     if (!use_icount) {  
         return 5000 * (int64_t) 1000000;  
     } else if (use_icount == 1) {  
         /* When not using an adaptive execution frequency  
            we tend to get badly out of sync with real time,  
            so just delay for a reasonable amount of time.  */  
         return 0;  
     } else {  
         return cpu_get_icount() - cpu_get_clock();  
     }  
 }  
 #endif  
   
 /* enable cpu_get_ticks() */  
 void cpu_enable_ticks(void)  
 {  
     if (!timers_state.cpu_ticks_enabled) {  
         timers_state.cpu_ticks_offset -= cpu_get_real_ticks();  
         timers_state.cpu_clock_offset -= get_clock();  
         timers_state.cpu_ticks_enabled = 1;  
     }  
 }  
   
 /* disable cpu_get_ticks() : the clock is stopped. You must not call  
    cpu_get_ticks() after that.  */  
 void cpu_disable_ticks(void)  
 {  
     if (timers_state.cpu_ticks_enabled) {  
         timers_state.cpu_ticks_offset = cpu_get_ticks();  
         timers_state.cpu_clock_offset = cpu_get_clock();  
         timers_state.cpu_ticks_enabled = 0;  
     }  
 }  
   
 /***********************************************************/  /***********************************************************/
 /* timers */  /* timers */
   
Line 149  struct QEMUClock { Line 57  struct QEMUClock {
     int type;      int type;
     int enabled;      int enabled;
   
     QEMUTimer *warp_timer;      QEMUTimer *active_timers;
   
     NotifierList reset_notifiers;      NotifierList reset_notifiers;
     int64_t last;      int64_t last;
Line 168  struct qemu_alarm_timer { Line 76  struct qemu_alarm_timer {
     char const *name;      char const *name;
     int (*start)(struct qemu_alarm_timer *t);      int (*start)(struct qemu_alarm_timer *t);
     void (*stop)(struct qemu_alarm_timer *t);      void (*stop)(struct qemu_alarm_timer *t);
     void (*rearm)(struct qemu_alarm_timer *t);      void (*rearm)(struct qemu_alarm_timer *t, int64_t nearest_delta_ns);
 #if defined(__linux__)  #if defined(__linux__)
     int fd;      int fd;
     timer_t timer;      timer_t timer;
Line 196  static inline int alarm_has_dynticks(str Line 104  static inline int alarm_has_dynticks(str
     return !!t->rearm;      return !!t->rearm;
 }  }
   
   static int64_t qemu_next_alarm_deadline(void)
   {
       int64_t delta;
       int64_t rtdelta;
   
       if (!use_icount && vm_clock->active_timers) {
           delta = vm_clock->active_timers->expire_time -
                        qemu_get_clock_ns(vm_clock);
       } else {
           delta = INT32_MAX;
       }
       if (host_clock->active_timers) {
           int64_t hdelta = host_clock->active_timers->expire_time -
                    qemu_get_clock_ns(host_clock);
           if (hdelta < delta) {
               delta = hdelta;
           }
       }
       if (rt_clock->active_timers) {
           rtdelta = (rt_clock->active_timers->expire_time -
                    qemu_get_clock_ns(rt_clock));
           if (rtdelta < delta) {
               delta = rtdelta;
           }
       }
   
       return delta;
   }
   
 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)  static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
 {  {
     if (!alarm_has_dynticks(t))      int64_t nearest_delta_ns;
       assert(alarm_has_dynticks(t));
       if (!rt_clock->active_timers &&
           !vm_clock->active_timers &&
           !host_clock->active_timers) {
         return;          return;
       }
     t->rearm(t);      nearest_delta_ns = qemu_next_alarm_deadline();
       t->rearm(t, nearest_delta_ns);
 }  }
   
 /* TODO: MIN_TIMER_REARM_NS should be optimized */  /* TODO: MIN_TIMER_REARM_NS should be optimized */
Line 211  static void qemu_rearm_alarm_timer(struc Line 153  static void qemu_rearm_alarm_timer(struc
   
 static int mm_start_timer(struct qemu_alarm_timer *t);  static int mm_start_timer(struct qemu_alarm_timer *t);
 static void mm_stop_timer(struct qemu_alarm_timer *t);  static void mm_stop_timer(struct qemu_alarm_timer *t);
 static void mm_rearm_timer(struct qemu_alarm_timer *t);  static void mm_rearm_timer(struct qemu_alarm_timer *t, int64_t delta);
   
 static int win32_start_timer(struct qemu_alarm_timer *t);  static int win32_start_timer(struct qemu_alarm_timer *t);
 static void win32_stop_timer(struct qemu_alarm_timer *t);  static void win32_stop_timer(struct qemu_alarm_timer *t);
 static void win32_rearm_timer(struct qemu_alarm_timer *t);  static void win32_rearm_timer(struct qemu_alarm_timer *t, int64_t delta);
   
 #else  #else
   
 static int unix_start_timer(struct qemu_alarm_timer *t);  static int unix_start_timer(struct qemu_alarm_timer *t);
 static void unix_stop_timer(struct qemu_alarm_timer *t);  static void unix_stop_timer(struct qemu_alarm_timer *t);
 static void unix_rearm_timer(struct qemu_alarm_timer *t);  static void unix_rearm_timer(struct qemu_alarm_timer *t, int64_t delta);
   
 #ifdef __linux__  #ifdef __linux__
   
 static int dynticks_start_timer(struct qemu_alarm_timer *t);  static int dynticks_start_timer(struct qemu_alarm_timer *t);
 static void dynticks_stop_timer(struct qemu_alarm_timer *t);  static void dynticks_stop_timer(struct qemu_alarm_timer *t);
 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);  static void dynticks_rearm_timer(struct qemu_alarm_timer *t, int64_t delta);
   
 #endif /* __linux__ */  #endif /* __linux__ */
   
 #endif /* _WIN32 */  #endif /* _WIN32 */
   
 /* Correlation between real and virtual time is always going to be  
    fairly approximate, so ignore small variation.  
    When the guest is idle real and virtual time will be aligned in  
    the IO wait loop.  */  
 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)  
   
 static void icount_adjust(void)  
 {  
     int64_t cur_time;  
     int64_t cur_icount;  
     int64_t delta;  
     static int64_t last_delta;  
     /* If the VM is not running, then do nothing.  */  
     if (!vm_running)  
         return;  
   
     cur_time = cpu_get_clock();  
     cur_icount = qemu_get_clock_ns(vm_clock);  
     delta = cur_icount - cur_time;  
     /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */  
     if (delta > 0  
         && last_delta + ICOUNT_WOBBLE < delta * 2  
         && icount_time_shift > 0) {  
         /* The guest is getting too far ahead.  Slow time down.  */  
         icount_time_shift--;  
     }  
     if (delta < 0  
         && last_delta - ICOUNT_WOBBLE > delta * 2  
         && icount_time_shift < MAX_ICOUNT_SHIFT) {  
         /* The guest is getting too far behind.  Speed time up.  */  
         icount_time_shift++;  
     }  
     last_delta = delta;  
     qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);  
 }  
   
 static void icount_adjust_rt(void * opaque)  
 {  
     qemu_mod_timer(icount_rt_timer,  
                    qemu_get_clock_ms(rt_clock) + 1000);  
     icount_adjust();  
 }  
   
 static void icount_adjust_vm(void * opaque)  
 {  
     qemu_mod_timer(icount_vm_timer,  
                    qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);  
     icount_adjust();  
 }  
   
 int64_t qemu_icount_round(int64_t count)  
 {  
     return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;  
 }  
   
 static struct qemu_alarm_timer alarm_timers[] = {  static struct qemu_alarm_timer alarm_timers[] = {
 #ifndef _WIN32  #ifndef _WIN32
 #ifdef __linux__  #ifdef __linux__
Line 296  static struct qemu_alarm_timer alarm_tim Line 183  static struct qemu_alarm_timer alarm_tim
 #endif  #endif
     {"unix", unix_start_timer, unix_stop_timer, unix_rearm_timer},      {"unix", unix_start_timer, unix_stop_timer, unix_rearm_timer},
 #else  #else
     {"mmtimer", mm_start_timer, mm_stop_timer, NULL},      {"mmtimer", mm_start_timer, mm_stop_timer, mm_rearm_timer},
     {"mmtimer2", mm_start_timer, mm_stop_timer, mm_rearm_timer},  
     {"dynticks", win32_start_timer, win32_stop_timer, win32_rearm_timer},      {"dynticks", win32_start_timer, win32_stop_timer, win32_rearm_timer},
     {"win32", win32_start_timer, win32_stop_timer, NULL},  
 #endif  #endif
     {NULL, }      {NULL, }
 };  };
Line 327  void configure_alarms(char const *opt) Line 212  void configure_alarms(char const *opt)
         exit(0);          exit(0);
     }      }
   
     arg = qemu_strdup(opt);      arg = g_strdup(opt);
   
     /* Reorder the array */      /* Reorder the array */
     name = strtok(arg, ",");      name = strtok(arg, ",");
Line 356  next: Line 241  next:
         name = strtok(NULL, ",");          name = strtok(NULL, ",");
     }      }
   
     qemu_free(arg);      g_free(arg);
   
     if (cur) {      if (cur) {
         /* Disable remaining timers */          /* Disable remaining timers */
Line 368  next: Line 253  next:
     }      }
 }  }
   
 #define QEMU_NUM_CLOCKS 3  
   
 QEMUClock *rt_clock;  QEMUClock *rt_clock;
 QEMUClock *vm_clock;  QEMUClock *vm_clock;
 QEMUClock *host_clock;  QEMUClock *host_clock;
   
 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];  
   
 static QEMUClock *qemu_new_clock(int type)  static QEMUClock *qemu_new_clock(int type)
 {  {
     QEMUClock *clock;      QEMUClock *clock;
   
     clock = qemu_mallocz(sizeof(QEMUClock));      clock = g_malloc0(sizeof(QEMUClock));
     clock->type = type;      clock->type = type;
     clock->enabled = 1;      clock->enabled = 1;
       clock->last = INT64_MIN;
     notifier_list_init(&clock->reset_notifiers);      notifier_list_init(&clock->reset_notifiers);
     /* required to detect & report backward jumps */  
     if (type == QEMU_CLOCK_HOST) {  
         clock->last = get_clock_realtime();  
     }  
     return clock;      return clock;
 }  }
   
 void qemu_clock_enable(QEMUClock *clock, int enabled)  void qemu_clock_enable(QEMUClock *clock, int enabled)
 {  {
       bool old = clock->enabled;
     clock->enabled = enabled;      clock->enabled = enabled;
       if (enabled && !old) {
           qemu_rearm_alarm_timer(alarm_timer);
       }
 }  }
   
 static int64_t vm_clock_warp_start;  int64_t qemu_clock_has_timers(QEMUClock *clock)
   
 static void icount_warp_rt(void *opaque)  
 {  {
     if (vm_clock_warp_start == -1) {      return !!clock->active_timers;
         return;  
     }  
   
     if (vm_running) {  
         int64_t clock = qemu_get_clock_ns(rt_clock);  
         int64_t warp_delta = clock - vm_clock_warp_start;  
         if (use_icount == 1) {  
             qemu_icount_bias += warp_delta;  
         } else {  
             /*  
              * In adaptive mode, do not let the vm_clock run too  
              * far ahead of real time.  
              */  
             int64_t cur_time = cpu_get_clock();  
             int64_t cur_icount = qemu_get_clock_ns(vm_clock);  
             int64_t delta = cur_time - cur_icount;  
             qemu_icount_bias += MIN(warp_delta, delta);  
         }  
         if (qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],  
                                qemu_get_clock_ns(vm_clock))) {  
             qemu_notify_event();  
         }  
     }  
     vm_clock_warp_start = -1;  
 }  }
   
 void qemu_clock_warp(QEMUClock *clock)  int64_t qemu_clock_expired(QEMUClock *clock)
 {  {
     int64_t deadline;      return (clock->active_timers &&
               clock->active_timers->expire_time < qemu_get_clock_ns(clock));
     if (!clock->warp_timer) {  }
         return;  
     }  
   
     /*  int64_t qemu_clock_deadline(QEMUClock *clock)
      * There are too many global variables to make the "warp" behavior  {
      * applicable to other clocks.  But a clock argument removes the      /* To avoid problems with overflow limit this to 2^32.  */
      * need for if statements all over the place.      int64_t delta = INT32_MAX;
      */  
     assert(clock == vm_clock);  
   
     /*      if (clock->active_timers) {
      * If the CPUs have been sleeping, advance the vm_clock timer now.  This          delta = clock->active_timers->expire_time - qemu_get_clock_ns(clock);
      * ensures that the deadline for the timer is computed correctly below.  
      * This also makes sure that the insn counter is synchronized before the  
      * CPU starts running, in case the CPU is woken by an event other than  
      * the earliest vm_clock timer.  
      */  
     icount_warp_rt(NULL);  
     if (!all_cpu_threads_idle() || !active_timers[clock->type]) {  
         qemu_del_timer(clock->warp_timer);  
         return;  
     }      }
       if (delta < 0) {
     vm_clock_warp_start = qemu_get_clock_ns(rt_clock);          delta = 0;
     deadline = qemu_next_icount_deadline();  
     if (deadline > 0) {  
         /*  
          * Ensure the vm_clock proceeds even when the virtual CPU goes to  
          * sleep.  Otherwise, the CPU might be waiting for a future timer  
          * interrupt to wake it up, but the interrupt never comes because  
          * the vCPU isn't running any insns and thus doesn't advance the  
          * vm_clock.  
          *  
          * An extreme solution for this problem would be to never let VCPUs  
          * sleep in icount mode if there is a pending vm_clock timer; rather  
          * time could just advance to the next vm_clock event.  Instead, we  
          * do stop VCPUs and only advance vm_clock after some "real" time,  
          * (related to the time left until the next event) has passed.  This  
          * rt_clock timer will do this.  This avoids that the warps are too  
          * visible externally---for example, you will not be sending network  
          * packets continously instead of every 100ms.  
          */  
         qemu_mod_timer(clock->warp_timer, vm_clock_warp_start + deadline);  
     } else {  
         qemu_notify_event();  
     }      }
       return delta;
 }  }
   
 QEMUTimer *qemu_new_timer(QEMUClock *clock, int scale,  QEMUTimer *qemu_new_timer(QEMUClock *clock, int scale,
Line 485  QEMUTimer *qemu_new_timer(QEMUClock *clo Line 308  QEMUTimer *qemu_new_timer(QEMUClock *clo
 {  {
     QEMUTimer *ts;      QEMUTimer *ts;
   
     ts = qemu_mallocz(sizeof(QEMUTimer));      ts = g_malloc0(sizeof(QEMUTimer));
     ts->clock = clock;      ts->clock = clock;
     ts->cb = cb;      ts->cb = cb;
     ts->opaque = opaque;      ts->opaque = opaque;
Line 495  QEMUTimer *qemu_new_timer(QEMUClock *clo Line 318  QEMUTimer *qemu_new_timer(QEMUClock *clo
   
 void qemu_free_timer(QEMUTimer *ts)  void qemu_free_timer(QEMUTimer *ts)
 {  {
     qemu_free(ts);      g_free(ts);
 }  }
   
 /* stop a timer, but do not dealloc it */  /* stop a timer, but do not dealloc it */
Line 505  void qemu_del_timer(QEMUTimer *ts) Line 328  void qemu_del_timer(QEMUTimer *ts)
   
     /* NOTE: this code must be signal safe because      /* NOTE: this code must be signal safe because
        qemu_timer_expired() can be called from a signal. */         qemu_timer_expired() can be called from a signal. */
     pt = &active_timers[ts->clock->type];      pt = &ts->clock->active_timers;
     for(;;) {      for(;;) {
         t = *pt;          t = *pt;
         if (!t)          if (!t)
Line 520  void qemu_del_timer(QEMUTimer *ts) Line 343  void qemu_del_timer(QEMUTimer *ts)
   
 /* modify the current timer so that it will be fired when current_time  /* modify the current timer so that it will be fired when current_time
    >= expire_time. The corresponding callback will be called. */     >= expire_time. The corresponding callback will be called. */
 static void qemu_mod_timer_ns(QEMUTimer *ts, int64_t expire_time)  void qemu_mod_timer_ns(QEMUTimer *ts, int64_t expire_time)
 {  {
     QEMUTimer **pt, *t;      QEMUTimer **pt, *t;
   
Line 529  static void qemu_mod_timer_ns(QEMUTimer  Line 352  static void qemu_mod_timer_ns(QEMUTimer 
     /* add the timer in the sorted list */      /* add the timer in the sorted list */
     /* NOTE: this code must be signal safe because      /* NOTE: this code must be signal safe because
        qemu_timer_expired() can be called from a signal. */         qemu_timer_expired() can be called from a signal. */
     pt = &active_timers[ts->clock->type];      pt = &ts->clock->active_timers;
     for(;;) {      for(;;) {
         t = *pt;          t = *pt;
         if (!qemu_timer_expired_ns(t, expire_time)) {          if (!qemu_timer_expired_ns(t, expire_time)) {
Line 542  static void qemu_mod_timer_ns(QEMUTimer  Line 365  static void qemu_mod_timer_ns(QEMUTimer 
     *pt = ts;      *pt = ts;
   
     /* Rearm if necessary  */      /* Rearm if necessary  */
     if (pt == &active_timers[ts->clock->type]) {      if (pt == &ts->clock->active_timers) {
         if (!alarm_timer->pending) {          if (!alarm_timer->pending) {
             qemu_rearm_alarm_timer(alarm_timer);              qemu_rearm_alarm_timer(alarm_timer);
         }          }
Line 554  static void qemu_mod_timer_ns(QEMUTimer  Line 377  static void qemu_mod_timer_ns(QEMUTimer 
     }      }
 }  }
   
 /* modify the current timer so that it will be fired when current_time  
    >= expire_time. The corresponding callback will be called. */  
 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)  void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
 {  {
     qemu_mod_timer_ns(ts, expire_time * ts->scale);      qemu_mod_timer_ns(ts, expire_time * ts->scale);
Line 564  void qemu_mod_timer(QEMUTimer *ts, int64 Line 385  void qemu_mod_timer(QEMUTimer *ts, int64
 int qemu_timer_pending(QEMUTimer *ts)  int qemu_timer_pending(QEMUTimer *ts)
 {  {
     QEMUTimer *t;      QEMUTimer *t;
     for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {      for (t = ts->clock->active_timers; t != NULL; t = t->next) {
         if (t == ts)          if (t == ts)
             return 1;              return 1;
     }      }
Line 585  static void qemu_run_timers(QEMUClock *c Line 406  static void qemu_run_timers(QEMUClock *c
         return;          return;
   
     current_time = qemu_get_clock_ns(clock);      current_time = qemu_get_clock_ns(clock);
     ptimer_head = &active_timers[clock->type];      ptimer_head = &clock->active_timers;
     for(;;) {      for(;;) {
         ts = *ptimer_head;          ts = *ptimer_head;
         if (!qemu_timer_expired_ns(ts, current_time)) {          if (!qemu_timer_expired_ns(ts, current_time)) {
Line 640  void init_clocks(void) Line 461  void init_clocks(void)
     rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);      rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
     vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);      vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
     host_clock = qemu_new_clock(QEMU_CLOCK_HOST);      host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
   
     rtc_clock = host_clock;  
 }  }
   
 /* save a timer */  uint64_t qemu_timer_expire_time_ns(QEMUTimer *ts)
 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)  
 {  {
     uint64_t expire_time;      return qemu_timer_pending(ts) ? ts->expire_time : -1;
   
     if (qemu_timer_pending(ts)) {  
         expire_time = ts->expire_time;  
     } else {  
         expire_time = -1;  
     }  
     qemu_put_be64(f, expire_time);  
 }  
   
 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)  
 {  
     uint64_t expire_time;  
   
     expire_time = qemu_get_be64(f);  
     if (expire_time != -1) {  
         qemu_mod_timer_ns(ts, expire_time);  
     } else {  
         qemu_del_timer(ts);  
     }  
 }  
   
 static const VMStateDescription vmstate_timers = {  
     .name = "timer",  
     .version_id = 2,  
     .minimum_version_id = 1,  
     .minimum_version_id_old = 1,  
     .fields      = (VMStateField []) {  
         VMSTATE_INT64(cpu_ticks_offset, TimersState),  
         VMSTATE_INT64(dummy, TimersState),  
         VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),  
         VMSTATE_END_OF_LIST()  
     }  
 };  
   
 void configure_icount(const char *option)  
 {  
     vmstate_register(NULL, 0, &vmstate_timers, &timers_state);  
     if (!option)  
         return;  
   
 #ifdef CONFIG_IOTHREAD  
     vm_clock->warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);  
 #endif  
   
     if (strcmp(option, "auto") != 0) {  
         icount_time_shift = strtol(option, NULL, 0);  
         use_icount = 1;  
         return;  
     }  
   
     use_icount = 2;  
   
     /* 125MIPS seems a reasonable initial guess at the guest speed.  
        It will be corrected fairly quickly anyway.  */  
     icount_time_shift = 3;  
   
     /* Have both realtime and virtual time triggers for speed adjustment.  
        The realtime trigger catches emulated time passing too slowly,  
        the virtual time trigger catches emulated time passing too fast.  
        Realtime triggers occur even when idle, so use them less frequently  
        than VM triggers.  */  
     icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);  
     qemu_mod_timer(icount_rt_timer,  
                    qemu_get_clock_ms(rt_clock) + 1000);  
     icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);  
     qemu_mod_timer(icount_vm_timer,  
                    qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);  
 }  }
   
 void qemu_run_all_timers(void)  void qemu_run_all_timers(void)
Line 728  void qemu_run_all_timers(void) Line 479  void qemu_run_all_timers(void)
     }      }
   
     /* vm time timers */      /* vm time timers */
     if (vm_running) {      qemu_run_timers(vm_clock);
         qemu_run_timers(vm_clock);  
     }  
   
     qemu_run_timers(rt_clock);      qemu_run_timers(rt_clock);
     qemu_run_timers(host_clock);      qemu_run_timers(host_clock);
 }  }
   
 static int64_t qemu_next_alarm_deadline(void);  
   
 #ifdef _WIN32  #ifdef _WIN32
 static void CALLBACK host_alarm_handler(PVOID lpParam, BOOLEAN unused)  static void CALLBACK host_alarm_handler(PVOID lpParam, BOOLEAN unused)
 #else  #else
Line 785  static void host_alarm_handler(int host_ Line 531  static void host_alarm_handler(int host_
     }      }
 }  }
   
 int64_t qemu_next_icount_deadline(void)  
 {  
     /* To avoid problems with overflow limit this to 2^32.  */  
     int64_t delta = INT32_MAX;  
   
     assert(use_icount);  
     if (active_timers[QEMU_CLOCK_VIRTUAL]) {  
         delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -  
                      qemu_get_clock_ns(vm_clock);  
     }  
   
     if (delta < 0)  
         delta = 0;  
   
     return delta;  
 }  
   
 static int64_t qemu_next_alarm_deadline(void)  
 {  
     int64_t delta;  
     int64_t rtdelta;  
   
     if (!use_icount && active_timers[QEMU_CLOCK_VIRTUAL]) {  
         delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -  
                      qemu_get_clock_ns(vm_clock);  
     } else {  
         delta = INT32_MAX;  
     }  
     if (active_timers[QEMU_CLOCK_HOST]) {  
         int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -  
                  qemu_get_clock_ns(host_clock);  
         if (hdelta < delta)  
             delta = hdelta;  
     }  
     if (active_timers[QEMU_CLOCK_REALTIME]) {  
         rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -  
                  qemu_get_clock_ns(rt_clock));  
         if (rtdelta < delta)  
             delta = rtdelta;  
     }  
   
     return delta;  
 }  
   
 #if defined(__linux__)  #if defined(__linux__)
   
 #include "compatfd.h"  #include "compatfd.h"
Line 881  static void dynticks_stop_timer(struct q Line 583  static void dynticks_stop_timer(struct q
     timer_delete(host_timer);      timer_delete(host_timer);
 }  }
   
 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)  static void dynticks_rearm_timer(struct qemu_alarm_timer *t,
                                    int64_t nearest_delta_ns)
 {  {
     timer_t host_timer = t->timer;      timer_t host_timer = t->timer;
     struct itimerspec timeout;      struct itimerspec timeout;
     int64_t nearest_delta_ns = INT64_MAX;  
     int64_t current_ns;      int64_t current_ns;
   
     assert(alarm_has_dynticks(t));  
     if (!active_timers[QEMU_CLOCK_REALTIME] &&  
         !active_timers[QEMU_CLOCK_VIRTUAL] &&  
         !active_timers[QEMU_CLOCK_HOST])  
         return;  
   
     nearest_delta_ns = qemu_next_alarm_deadline();  
     if (nearest_delta_ns < MIN_TIMER_REARM_NS)      if (nearest_delta_ns < MIN_TIMER_REARM_NS)
         nearest_delta_ns = MIN_TIMER_REARM_NS;          nearest_delta_ns = MIN_TIMER_REARM_NS;
   
Line 936  static int unix_start_timer(struct qemu_ Line 631  static int unix_start_timer(struct qemu_
     return 0;      return 0;
 }  }
   
 static void unix_rearm_timer(struct qemu_alarm_timer *t)  static void unix_rearm_timer(struct qemu_alarm_timer *t,
                                int64_t nearest_delta_ns)
 {  {
     struct itimerval itv;      struct itimerval itv;
     int64_t nearest_delta_ns = INT64_MAX;  
     int err;      int err;
   
     assert(alarm_has_dynticks(t));  
     if (!active_timers[QEMU_CLOCK_REALTIME] &&  
         !active_timers[QEMU_CLOCK_VIRTUAL] &&  
         !active_timers[QEMU_CLOCK_HOST])  
         return;  
   
     nearest_delta_ns = qemu_next_alarm_deadline();  
     if (nearest_delta_ns < MIN_TIMER_REARM_NS)      if (nearest_delta_ns < MIN_TIMER_REARM_NS)
         nearest_delta_ns = MIN_TIMER_REARM_NS;          nearest_delta_ns = MIN_TIMER_REARM_NS;
   
Line 1035  static void mm_stop_timer(struct qemu_al Line 723  static void mm_stop_timer(struct qemu_al
     timeEndPeriod(mm_period);      timeEndPeriod(mm_period);
 }  }
   
 static void mm_rearm_timer(struct qemu_alarm_timer *t)  static void mm_rearm_timer(struct qemu_alarm_timer *t, int64_t delta)
 {  {
     int nearest_delta_ms;      int nearest_delta_ms = (delta + 999999) / 1000000;
   
     assert(alarm_has_dynticks(t));  
     if (!active_timers[QEMU_CLOCK_REALTIME] &&  
         !active_timers[QEMU_CLOCK_VIRTUAL] &&  
         !active_timers[QEMU_CLOCK_HOST]) {  
         return;  
     }  
   
     timeKillEvent(mm_timer);  
   
     nearest_delta_ms = (qemu_next_alarm_deadline() + 999999) / 1000000;  
     if (nearest_delta_ms < 1) {      if (nearest_delta_ms < 1) {
         nearest_delta_ms = 1;          nearest_delta_ms = 1;
     }      }
   
       timeKillEvent(mm_timer);
     mm_timer = timeSetEvent(nearest_delta_ms,      mm_timer = timeSetEvent(nearest_delta_ms,
                             mm_period,                              mm_period,
                             mm_alarm_handler,                              mm_alarm_handler,
Line 1103  static void win32_stop_timer(struct qemu Line 782  static void win32_stop_timer(struct qemu
     }      }
 }  }
   
 static void win32_rearm_timer(struct qemu_alarm_timer *t)  static void win32_rearm_timer(struct qemu_alarm_timer *t,
                                 int64_t nearest_delta_ns)
 {  {
     HANDLE hTimer = t->timer;      HANDLE hTimer = t->timer;
     int nearest_delta_ms;      int nearest_delta_ms;
     BOOLEAN success;      BOOLEAN success;
   
     assert(alarm_has_dynticks(t));      nearest_delta_ms = (nearest_delta_ns + 999999) / 1000000;
     if (!active_timers[QEMU_CLOCK_REALTIME] &&  
         !active_timers[QEMU_CLOCK_VIRTUAL] &&  
         !active_timers[QEMU_CLOCK_HOST])  
         return;  
   
     nearest_delta_ms = (qemu_next_alarm_deadline() + 999999) / 1000000;  
     if (nearest_delta_ms < 1) {      if (nearest_delta_ms < 1) {
         nearest_delta_ms = 1;          nearest_delta_ms = 1;
     }      }
Line 1134  static void win32_rearm_timer(struct qem Line 808  static void win32_rearm_timer(struct qem
   
 #endif /* _WIN32 */  #endif /* _WIN32 */
   
 static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason)  static void quit_timers(void)
 {  {
     if (running)      struct qemu_alarm_timer *t = alarm_timer;
         qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque);      alarm_timer = NULL;
       t->stop(t);
 }  }
   
 int init_timer_alarm(void)  int init_timer_alarm(void)
Line 1159  int init_timer_alarm(void) Line 834  int init_timer_alarm(void)
     }      }
   
     /* first event is at time 0 */      /* first event is at time 0 */
       atexit(quit_timers);
     t->pending = 1;      t->pending = 1;
     alarm_timer = t;      alarm_timer = t;
     qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t);  
   
     return 0;      return 0;
   
Line 1169  fail: Line 844  fail:
     return err;      return err;
 }  }
   
 void quit_timers(void)  
 {  
     struct qemu_alarm_timer *t = alarm_timer;  
     alarm_timer = NULL;  
     t->stop(t);  
 }  
   
 int qemu_calculate_timeout(void)  int qemu_calculate_timeout(void)
 {  {
 #ifndef CONFIG_IOTHREAD  
     int timeout;  
   
     if (!vm_running)  
         timeout = 5000;  
     else {  
      /* XXX: use timeout computed from timers */  
         int64_t add;  
         int64_t delta;  
         /* Advance virtual time to the next event.  */  
         delta = qemu_icount_delta();  
         if (delta > 0) {  
             /* If virtual time is ahead of real time then just  
                wait for IO.  */  
             timeout = (delta + 999999) / 1000000;  
         } else {  
             /* Wait for either IO to occur or the next  
                timer event.  */  
             add = qemu_next_icount_deadline();  
             /* We advance the timer before checking for IO.  
                Limit the amount we advance so that early IO  
                activity won't get the guest too far ahead.  */  
             if (add > 10000000)  
                 add = 10000000;  
             delta += add;  
             qemu_icount += qemu_icount_round (add);  
             timeout = delta / 1000000;  
             if (timeout < 0)  
                 timeout = 0;  
         }  
     }  
   
     return timeout;  
 #else /* CONFIG_IOTHREAD */  
     return 1000;      return 1000;
 #endif  
 }  }
   

Removed from v.1.1.1.3  
changed lines
  Added in v.1.1.1.4


unix.superglobalmegacorp.com