Annotation of qemu/slirp/ip_input.c, revision 1.1.1.6
1.1 root 1: /*
2: * Copyright (c) 1982, 1986, 1988, 1993
3: * The Regents of the University of California. All rights reserved.
4: *
5: * Redistribution and use in source and binary forms, with or without
6: * modification, are permitted provided that the following conditions
7: * are met:
8: * 1. Redistributions of source code must retain the above copyright
9: * notice, this list of conditions and the following disclaimer.
10: * 2. Redistributions in binary form must reproduce the above copyright
11: * notice, this list of conditions and the following disclaimer in the
12: * documentation and/or other materials provided with the distribution.
1.1.1.4 root 13: * 3. Neither the name of the University nor the names of its contributors
1.1 root 14: * may be used to endorse or promote products derived from this software
15: * without specific prior written permission.
16: *
17: * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18: * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19: * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20: * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21: * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22: * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23: * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24: * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25: * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26: * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27: * SUCH DAMAGE.
28: *
29: * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
30: * ip_input.c,v 1.11 1994/11/16 10:17:08 jkh Exp
31: */
32:
33: /*
34: * Changes and additions relating to SLiRP are
35: * Copyright (c) 1995 Danny Gasparovski.
1.1.1.3 root 36: *
1.1 root 37: * Please read the file COPYRIGHT for the
38: * terms and conditions of the copyright.
39: */
40:
41: #include <slirp.h>
1.1.1.4 root 42: #include <osdep.h>
1.1 root 43: #include "ip_icmp.h"
44:
1.1.1.5 root 45: static struct ip *ip_reass(Slirp *slirp, struct ip *ip, struct ipq *fp);
46: static void ip_freef(Slirp *slirp, struct ipq *fp);
1.1.1.3 root 47: static void ip_enq(register struct ipasfrag *p,
48: register struct ipasfrag *prev);
49: static void ip_deq(register struct ipasfrag *p);
50:
1.1 root 51: /*
52: * IP initialization: fill in IP protocol switch table.
53: * All protocols not implemented in kernel go to raw IP protocol handler.
54: */
55: void
1.1.1.5 root 56: ip_init(Slirp *slirp)
1.1 root 57: {
1.1.1.5 root 58: slirp->ipq.ip_link.next = slirp->ipq.ip_link.prev = &slirp->ipq.ip_link;
59: udp_init(slirp);
60: tcp_init(slirp);
1.1 root 61: }
62:
63: /*
64: * Ip input routine. Checksum and byte swap header. If fragmented
65: * try to reassemble. Process options. Pass to next level.
66: */
67: void
1.1.1.5 root 68: ip_input(struct mbuf *m)
1.1 root 69: {
1.1.1.5 root 70: Slirp *slirp = m->slirp;
1.1 root 71: register struct ip *ip;
72: int hlen;
1.1.1.3 root 73:
1.1 root 74: DEBUG_CALL("ip_input");
75: DEBUG_ARG("m = %lx", (long)m);
76: DEBUG_ARG("m_len = %d", m->m_len);
77:
78: if (m->m_len < sizeof (struct ip)) {
79: return;
80: }
1.1.1.3 root 81:
1.1 root 82: ip = mtod(m, struct ip *);
1.1.1.3 root 83:
1.1 root 84: if (ip->ip_v != IPVERSION) {
85: goto bad;
86: }
87:
88: hlen = ip->ip_hl << 2;
89: if (hlen<sizeof(struct ip ) || hlen>m->m_len) {/* min header length */
1.1.1.5 root 90: goto bad; /* or packet too short */
1.1 root 91: }
92:
93: /* keep ip header intact for ICMP reply
1.1.1.3 root 94: * ip->ip_sum = cksum(m, hlen);
95: * if (ip->ip_sum) {
1.1 root 96: */
97: if(cksum(m,hlen)) {
98: goto bad;
99: }
100:
101: /*
102: * Convert fields to host representation.
103: */
104: NTOHS(ip->ip_len);
105: if (ip->ip_len < hlen) {
106: goto bad;
107: }
108: NTOHS(ip->ip_id);
109: NTOHS(ip->ip_off);
110:
111: /*
112: * Check that the amount of data in the buffers
113: * is as at least much as the IP header would have us expect.
114: * Trim mbufs if longer than we expect.
115: * Drop packet if shorter than we expect.
116: */
117: if (m->m_len < ip->ip_len) {
118: goto bad;
119: }
1.1.1.4 root 120:
1.1.1.5 root 121: if (slirp->restricted) {
122: if ((ip->ip_dst.s_addr & slirp->vnetwork_mask.s_addr) ==
123: slirp->vnetwork_addr.s_addr) {
1.1.1.4 root 124: if (ip->ip_dst.s_addr == 0xffffffff && ip->ip_p != IPPROTO_UDP)
125: goto bad;
126: } else {
1.1.1.5 root 127: uint32_t inv_mask = ~slirp->vnetwork_mask.s_addr;
1.1.1.4 root 128: struct ex_list *ex_ptr;
129:
1.1.1.5 root 130: if ((ip->ip_dst.s_addr & inv_mask) == inv_mask) {
1.1.1.4 root 131: goto bad;
1.1.1.5 root 132: }
133: for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next)
134: if (ex_ptr->ex_addr.s_addr == ip->ip_dst.s_addr)
1.1.1.4 root 135: break;
136:
137: if (!ex_ptr)
138: goto bad;
139: }
140: }
141:
1.1 root 142: /* Should drop packet if mbuf too long? hmmm... */
143: if (m->m_len > ip->ip_len)
144: m_adj(m, ip->ip_len - m->m_len);
145:
146: /* check ip_ttl for a correct ICMP reply */
147: if(ip->ip_ttl==0 || ip->ip_ttl==1) {
148: icmp_error(m, ICMP_TIMXCEED,ICMP_TIMXCEED_INTRANS, 0,"ttl");
149: goto bad;
150: }
151:
152: /*
153: * If offset or IP_MF are set, must reassemble.
154: * Otherwise, nothing need be done.
155: * (We could look in the reassembly queue to see
156: * if the packet was previously fragmented,
157: * but it's not worth the time; just let them time out.)
1.1.1.3 root 158: *
1.1 root 159: * XXX This should fail, don't fragment yet
160: */
161: if (ip->ip_off &~ IP_DF) {
162: register struct ipq *fp;
1.1.1.4 root 163: struct qlink *l;
1.1 root 164: /*
165: * Look for queue of fragments
166: * of this datagram.
167: */
1.1.1.5 root 168: for (l = slirp->ipq.ip_link.next; l != &slirp->ipq.ip_link;
169: l = l->next) {
1.1.1.4 root 170: fp = container_of(l, struct ipq, ip_link);
171: if (ip->ip_id == fp->ipq_id &&
172: ip->ip_src.s_addr == fp->ipq_src.s_addr &&
173: ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
174: ip->ip_p == fp->ipq_p)
1.1 root 175: goto found;
1.1.1.4 root 176: }
177: fp = NULL;
1.1 root 178: found:
179:
180: /*
181: * Adjust ip_len to not reflect header,
182: * set ip_mff if more fragments are expected,
183: * convert offset of this to bytes.
184: */
185: ip->ip_len -= hlen;
186: if (ip->ip_off & IP_MF)
1.1.1.4 root 187: ip->ip_tos |= 1;
1.1.1.3 root 188: else
1.1.1.4 root 189: ip->ip_tos &= ~1;
1.1 root 190:
191: ip->ip_off <<= 3;
192:
193: /*
194: * If datagram marked as having more fragments
195: * or if this is not the first fragment,
196: * attempt reassembly; if it succeeds, proceed.
197: */
1.1.1.4 root 198: if (ip->ip_tos & 1 || ip->ip_off) {
1.1.1.5 root 199: ip = ip_reass(slirp, ip, fp);
200: if (ip == NULL)
1.1 root 201: return;
1.1.1.5 root 202: m = dtom(slirp, ip);
1.1 root 203: } else
204: if (fp)
1.1.1.5 root 205: ip_freef(slirp, fp);
1.1 root 206:
207: } else
208: ip->ip_len -= hlen;
209:
210: /*
211: * Switch out to protocol's input routine.
212: */
213: switch (ip->ip_p) {
214: case IPPROTO_TCP:
215: tcp_input(m, hlen, (struct socket *)NULL);
216: break;
217: case IPPROTO_UDP:
218: udp_input(m, hlen);
219: break;
220: case IPPROTO_ICMP:
221: icmp_input(m, hlen);
222: break;
223: default:
224: m_free(m);
225: }
226: return;
227: bad:
228: m_freem(m);
229: return;
230: }
231:
1.1.1.4 root 232: #define iptofrag(P) ((struct ipasfrag *)(((char*)(P)) - sizeof(struct qlink)))
233: #define fragtoip(P) ((struct ip*)(((char*)(P)) + sizeof(struct qlink)))
1.1 root 234: /*
235: * Take incoming datagram fragment and try to
236: * reassemble it into whole datagram. If a chain for
237: * reassembly of this datagram already exists, then it
238: * is given as fp; otherwise have to make a chain.
239: */
1.1.1.3 root 240: static struct ip *
1.1.1.5 root 241: ip_reass(Slirp *slirp, struct ip *ip, struct ipq *fp)
1.1 root 242: {
1.1.1.5 root 243: register struct mbuf *m = dtom(slirp, ip);
1.1 root 244: register struct ipasfrag *q;
245: int hlen = ip->ip_hl << 2;
246: int i, next;
1.1.1.3 root 247:
1.1 root 248: DEBUG_CALL("ip_reass");
249: DEBUG_ARG("ip = %lx", (long)ip);
250: DEBUG_ARG("fp = %lx", (long)fp);
251: DEBUG_ARG("m = %lx", (long)m);
252:
253: /*
254: * Presence of header sizes in mbufs
255: * would confuse code below.
256: * Fragment m_data is concatenated.
257: */
258: m->m_data += hlen;
259: m->m_len -= hlen;
260:
261: /*
262: * If first fragment to arrive, create a reassembly queue.
263: */
1.1.1.5 root 264: if (fp == NULL) {
265: struct mbuf *t = m_get(slirp);
266:
267: if (t == NULL) {
268: goto dropfrag;
269: }
1.1 root 270: fp = mtod(t, struct ipq *);
1.1.1.5 root 271: insque(&fp->ip_link, &slirp->ipq.ip_link);
1.1 root 272: fp->ipq_ttl = IPFRAGTTL;
273: fp->ipq_p = ip->ip_p;
274: fp->ipq_id = ip->ip_id;
1.1.1.4 root 275: fp->frag_link.next = fp->frag_link.prev = &fp->frag_link;
276: fp->ipq_src = ip->ip_src;
277: fp->ipq_dst = ip->ip_dst;
1.1 root 278: q = (struct ipasfrag *)fp;
279: goto insert;
280: }
1.1.1.3 root 281:
1.1 root 282: /*
283: * Find a segment which begins after this one does.
284: */
1.1.1.4 root 285: for (q = fp->frag_link.next; q != (struct ipasfrag *)&fp->frag_link;
286: q = q->ipf_next)
287: if (q->ipf_off > ip->ip_off)
1.1 root 288: break;
289:
290: /*
291: * If there is a preceding segment, it may provide some of
292: * our data already. If so, drop the data from the incoming
293: * segment. If it provides all of our data, drop us.
294: */
1.1.1.4 root 295: if (q->ipf_prev != &fp->frag_link) {
296: struct ipasfrag *pq = q->ipf_prev;
297: i = pq->ipf_off + pq->ipf_len - ip->ip_off;
1.1 root 298: if (i > 0) {
299: if (i >= ip->ip_len)
300: goto dropfrag;
1.1.1.5 root 301: m_adj(dtom(slirp, ip), i);
1.1 root 302: ip->ip_off += i;
303: ip->ip_len -= i;
304: }
305: }
306:
307: /*
308: * While we overlap succeeding segments trim them or,
309: * if they are completely covered, dequeue them.
310: */
1.1.1.4 root 311: while (q != (struct ipasfrag*)&fp->frag_link &&
312: ip->ip_off + ip->ip_len > q->ipf_off) {
313: i = (ip->ip_off + ip->ip_len) - q->ipf_off;
314: if (i < q->ipf_len) {
315: q->ipf_len -= i;
316: q->ipf_off += i;
1.1.1.5 root 317: m_adj(dtom(slirp, q), i);
1.1 root 318: break;
319: }
1.1.1.4 root 320: q = q->ipf_next;
1.1.1.5 root 321: m_freem(dtom(slirp, q->ipf_prev));
1.1.1.4 root 322: ip_deq(q->ipf_prev);
1.1 root 323: }
324:
325: insert:
326: /*
327: * Stick new segment in its place;
328: * check for complete reassembly.
329: */
1.1.1.4 root 330: ip_enq(iptofrag(ip), q->ipf_prev);
1.1 root 331: next = 0;
1.1.1.4 root 332: for (q = fp->frag_link.next; q != (struct ipasfrag*)&fp->frag_link;
333: q = q->ipf_next) {
334: if (q->ipf_off != next)
1.1.1.5 root 335: return NULL;
1.1.1.4 root 336: next += q->ipf_len;
1.1 root 337: }
1.1.1.4 root 338: if (((struct ipasfrag *)(q->ipf_prev))->ipf_tos & 1)
1.1.1.5 root 339: return NULL;
1.1 root 340:
341: /*
342: * Reassembly is complete; concatenate fragments.
343: */
1.1.1.4 root 344: q = fp->frag_link.next;
1.1.1.5 root 345: m = dtom(slirp, q);
1.1 root 346:
347: q = (struct ipasfrag *) q->ipf_next;
1.1.1.4 root 348: while (q != (struct ipasfrag*)&fp->frag_link) {
1.1.1.5 root 349: struct mbuf *t = dtom(slirp, q);
1.1 root 350: q = (struct ipasfrag *) q->ipf_next;
1.1.1.2 root 351: m_cat(m, t);
1.1 root 352: }
353:
354: /*
355: * Create header for new ip packet by
356: * modifying header of first packet;
357: * dequeue and discard fragment reassembly header.
358: * Make header visible.
359: */
1.1.1.4 root 360: q = fp->frag_link.next;
1.1 root 361:
362: /*
363: * If the fragments concatenated to an mbuf that's
364: * bigger than the total size of the fragment, then and
365: * m_ext buffer was alloced. But fp->ipq_next points to
366: * the old buffer (in the mbuf), so we must point ip
367: * into the new buffer.
368: */
369: if (m->m_flags & M_EXT) {
1.1.1.4 root 370: int delta = (char *)q - m->m_dat;
371: q = (struct ipasfrag *)(m->m_ext + delta);
1.1 root 372: }
373:
1.1.1.4 root 374: ip = fragtoip(q);
1.1 root 375: ip->ip_len = next;
1.1.1.4 root 376: ip->ip_tos &= ~1;
377: ip->ip_src = fp->ipq_src;
378: ip->ip_dst = fp->ipq_dst;
379: remque(&fp->ip_link);
1.1.1.5 root 380: (void) m_free(dtom(slirp, fp));
1.1 root 381: m->m_len += (ip->ip_hl << 2);
382: m->m_data -= (ip->ip_hl << 2);
383:
1.1.1.4 root 384: return ip;
1.1 root 385:
386: dropfrag:
387: m_freem(m);
1.1.1.5 root 388: return NULL;
1.1 root 389: }
390:
391: /*
392: * Free a fragment reassembly header and all
393: * associated datagrams.
394: */
1.1.1.3 root 395: static void
1.1.1.5 root 396: ip_freef(Slirp *slirp, struct ipq *fp)
1.1 root 397: {
398: register struct ipasfrag *q, *p;
399:
1.1.1.4 root 400: for (q = fp->frag_link.next; q != (struct ipasfrag*)&fp->frag_link; q = p) {
401: p = q->ipf_next;
1.1 root 402: ip_deq(q);
1.1.1.5 root 403: m_freem(dtom(slirp, q));
1.1 root 404: }
1.1.1.4 root 405: remque(&fp->ip_link);
1.1.1.5 root 406: (void) m_free(dtom(slirp, fp));
1.1 root 407: }
408:
409: /*
410: * Put an ip fragment on a reassembly chain.
411: * Like insque, but pointers in middle of structure.
412: */
1.1.1.3 root 413: static void
414: ip_enq(register struct ipasfrag *p, register struct ipasfrag *prev)
1.1 root 415: {
416: DEBUG_CALL("ip_enq");
417: DEBUG_ARG("prev = %lx", (long)prev);
1.1.1.4 root 418: p->ipf_prev = prev;
1.1 root 419: p->ipf_next = prev->ipf_next;
1.1.1.4 root 420: ((struct ipasfrag *)(prev->ipf_next))->ipf_prev = p;
421: prev->ipf_next = p;
1.1 root 422: }
423:
424: /*
425: * To ip_enq as remque is to insque.
426: */
1.1.1.3 root 427: static void
428: ip_deq(register struct ipasfrag *p)
1.1 root 429: {
430: ((struct ipasfrag *)(p->ipf_prev))->ipf_next = p->ipf_next;
431: ((struct ipasfrag *)(p->ipf_next))->ipf_prev = p->ipf_prev;
432: }
433:
434: /*
435: * IP timer processing;
436: * if a timer expires on a reassembly
437: * queue, discard it.
438: */
439: void
1.1.1.5 root 440: ip_slowtimo(Slirp *slirp)
1.1 root 441: {
1.1.1.4 root 442: struct qlink *l;
1.1.1.3 root 443:
1.1 root 444: DEBUG_CALL("ip_slowtimo");
1.1.1.3 root 445:
1.1.1.5 root 446: l = slirp->ipq.ip_link.next;
1.1.1.4 root 447:
1.1.1.5 root 448: if (l == NULL)
1.1 root 449: return;
450:
1.1.1.5 root 451: while (l != &slirp->ipq.ip_link) {
1.1.1.4 root 452: struct ipq *fp = container_of(l, struct ipq, ip_link);
453: l = l->next;
454: if (--fp->ipq_ttl == 0) {
1.1.1.5 root 455: ip_freef(slirp, fp);
1.1 root 456: }
1.1.1.5 root 457: }
1.1 root 458: }
459:
460: /*
461: * Do option processing on a datagram,
462: * possibly discarding it if bad options are encountered,
463: * or forwarding it if source-routed.
464: * Returns 1 if packet has been forwarded/freed,
465: * 0 if the packet should be processed further.
466: */
467:
468: #ifdef notdef
469:
470: int
471: ip_dooptions(m)
472: struct mbuf *m;
473: {
474: register struct ip *ip = mtod(m, struct ip *);
475: register u_char *cp;
476: register struct ip_timestamp *ipt;
477: register struct in_ifaddr *ia;
478: int opt, optlen, cnt, off, code, type, forward = 0;
479: struct in_addr *sin, dst;
480: typedef u_int32_t n_time;
481: n_time ntime;
482:
483: dst = ip->ip_dst;
484: cp = (u_char *)(ip + 1);
485: cnt = (ip->ip_hl << 2) - sizeof (struct ip);
486: for (; cnt > 0; cnt -= optlen, cp += optlen) {
487: opt = cp[IPOPT_OPTVAL];
488: if (opt == IPOPT_EOL)
489: break;
490: if (opt == IPOPT_NOP)
491: optlen = 1;
492: else {
493: optlen = cp[IPOPT_OLEN];
494: if (optlen <= 0 || optlen > cnt) {
495: code = &cp[IPOPT_OLEN] - (u_char *)ip;
496: goto bad;
497: }
498: }
499: switch (opt) {
500:
501: default:
502: break;
503:
504: /*
505: * Source routing with record.
506: * Find interface with current destination address.
507: * If none on this machine then drop if strictly routed,
508: * or do nothing if loosely routed.
509: * Record interface address and bring up next address
510: * component. If strictly routed make sure next
511: * address is on directly accessible net.
512: */
513: case IPOPT_LSRR:
514: case IPOPT_SSRR:
515: if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
516: code = &cp[IPOPT_OFFSET] - (u_char *)ip;
517: goto bad;
518: }
519: ipaddr.sin_addr = ip->ip_dst;
520: ia = (struct in_ifaddr *)
521: ifa_ifwithaddr((struct sockaddr *)&ipaddr);
522: if (ia == 0) {
523: if (opt == IPOPT_SSRR) {
524: type = ICMP_UNREACH;
525: code = ICMP_UNREACH_SRCFAIL;
526: goto bad;
527: }
528: /*
529: * Loose routing, and not at next destination
530: * yet; nothing to do except forward.
531: */
532: break;
533: }
534: off--; / * 0 origin * /
535: if (off > optlen - sizeof(struct in_addr)) {
536: /*
537: * End of source route. Should be for us.
538: */
539: save_rte(cp, ip->ip_src);
540: break;
541: }
542: /*
543: * locate outgoing interface
544: */
545: bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
546: sizeof(ipaddr.sin_addr));
547: if (opt == IPOPT_SSRR) {
548: #define INA struct in_ifaddr *
549: #define SA struct sockaddr *
550: if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
551: ia = (INA)ifa_ifwithnet((SA)&ipaddr);
552: } else
553: ia = ip_rtaddr(ipaddr.sin_addr);
554: if (ia == 0) {
555: type = ICMP_UNREACH;
556: code = ICMP_UNREACH_SRCFAIL;
557: goto bad;
558: }
559: ip->ip_dst = ipaddr.sin_addr;
560: bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
561: (caddr_t)(cp + off), sizeof(struct in_addr));
562: cp[IPOPT_OFFSET] += sizeof(struct in_addr);
563: /*
564: * Let ip_intr's mcast routing check handle mcast pkts
565: */
566: forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
567: break;
568:
569: case IPOPT_RR:
570: if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
571: code = &cp[IPOPT_OFFSET] - (u_char *)ip;
572: goto bad;
573: }
574: /*
575: * If no space remains, ignore.
576: */
577: off--; * 0 origin *
578: if (off > optlen - sizeof(struct in_addr))
579: break;
580: bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
581: sizeof(ipaddr.sin_addr));
582: /*
583: * locate outgoing interface; if we're the destination,
584: * use the incoming interface (should be same).
585: */
586: if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
587: (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
588: type = ICMP_UNREACH;
589: code = ICMP_UNREACH_HOST;
590: goto bad;
591: }
592: bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
593: (caddr_t)(cp + off), sizeof(struct in_addr));
594: cp[IPOPT_OFFSET] += sizeof(struct in_addr);
595: break;
596:
597: case IPOPT_TS:
598: code = cp - (u_char *)ip;
599: ipt = (struct ip_timestamp *)cp;
600: if (ipt->ipt_len < 5)
601: goto bad;
602: if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
603: if (++ipt->ipt_oflw == 0)
604: goto bad;
605: break;
606: }
607: sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
608: switch (ipt->ipt_flg) {
609:
610: case IPOPT_TS_TSONLY:
611: break;
612:
613: case IPOPT_TS_TSANDADDR:
614: if (ipt->ipt_ptr + sizeof(n_time) +
615: sizeof(struct in_addr) > ipt->ipt_len)
616: goto bad;
617: ipaddr.sin_addr = dst;
618: ia = (INA)ifaof_ i f p foraddr((SA)&ipaddr,
619: m->m_pkthdr.rcvif);
620: if (ia == 0)
621: continue;
622: bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
623: (caddr_t)sin, sizeof(struct in_addr));
624: ipt->ipt_ptr += sizeof(struct in_addr);
625: break;
626:
627: case IPOPT_TS_PRESPEC:
628: if (ipt->ipt_ptr + sizeof(n_time) +
629: sizeof(struct in_addr) > ipt->ipt_len)
630: goto bad;
631: bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
632: sizeof(struct in_addr));
633: if (ifa_ifwithaddr((SA)&ipaddr) == 0)
634: continue;
635: ipt->ipt_ptr += sizeof(struct in_addr);
636: break;
637:
638: default:
639: goto bad;
640: }
641: ntime = iptime();
642: bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
643: sizeof(n_time));
644: ipt->ipt_ptr += sizeof(n_time);
645: }
646: }
647: if (forward) {
648: ip_forward(m, 1);
649: return (1);
650: }
651: return (0);
652: bad:
653: icmp_error(m, type, code, 0, 0);
654:
655: return (1);
656: }
657:
658: #endif /* notdef */
659:
660: /*
661: * Strip out IP options, at higher
662: * level protocol in the kernel.
663: * Second argument is buffer to which options
664: * will be moved, and return value is their length.
665: * (XXX) should be deleted; last arg currently ignored.
666: */
667: void
1.1.1.5 root 668: ip_stripoptions(register struct mbuf *m, struct mbuf *mopt)
1.1 root 669: {
670: register int i;
671: struct ip *ip = mtod(m, struct ip *);
672: register caddr_t opts;
673: int olen;
674:
675: olen = (ip->ip_hl<<2) - sizeof (struct ip);
676: opts = (caddr_t)(ip + 1);
677: i = m->m_len - (sizeof (struct ip) + olen);
678: memcpy(opts, opts + olen, (unsigned)i);
679: m->m_len -= olen;
1.1.1.3 root 680:
1.1 root 681: ip->ip_hl = sizeof(struct ip) >> 2;
682: }
unix.superglobalmegacorp.com