Source to ./ppc32.c
/*
* Cisco router simulation platform.
* Copyright (c) 2005,2006 Christophe Fillot ([email protected])
*
* PowerPC (32-bit) generic routines.
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <assert.h>
#include "rbtree.h"
#include "cpu.h"
#include "dynamips.h"
#include "memory.h"
#include "device.h"
#include "ppc32_mem.h"
#include "ppc32_exec.h"
#include "ppc32_jit.h"
/* Reset a PowerPC CPU */
int ppc32_reset(cpu_ppc_t *cpu)
{
cpu->ia = PPC32_ROM_START;
cpu->gpr[1] = PPC32_ROM_SP;
cpu->msr = PPC32_MSR_IP;
/* Restart the MTS subsystem */
ppc32_mem_restart(cpu);
/* Flush JIT structures */
ppc32_jit_flush(cpu,0);
return(0);
}
/* Initialize a PowerPC processor */
int ppc32_init(cpu_ppc_t *cpu)
{
/* Initialize JIT operations */
jit_op_init_cpu(cpu->gen);
/* Initialize idle timer */
cpu->gen->idle_max = 1500;
cpu->gen->idle_sleep_time = 30000;
/* Timer IRQ parameters (default frequency: 250 Hz <=> 4ms period) */
cpu->timer_irq_check_itv = 1000;
cpu->timer_irq_freq = 250;
/* Enable/disable direct block jump */
cpu->exec_blk_direct_jump = cpu->vm->exec_blk_direct_jump;
/* Idle loop mutex and condition */
pthread_mutex_init(&cpu->gen->idle_mutex,NULL);
pthread_cond_init(&cpu->gen->idle_cond,NULL);
/* Set the CPU methods */
cpu->gen->reg_set = (void *)ppc32_reg_set;
cpu->gen->reg_dump = (void *)ppc32_dump_regs;
cpu->gen->mmu_dump = (void *)ppc32_dump_mmu;
cpu->gen->mmu_raw_dump = (void *)ppc32_dump_mmu;
cpu->gen->add_breakpoint = (void *)ppc32_add_breakpoint;
cpu->gen->remove_breakpoint = (void *)ppc32_remove_breakpoint;
cpu->gen->set_idle_pc = (void *)ppc32_set_idle_pc;
cpu->gen->get_idling_pc = (void *)ppc32_get_idling_pc;
/* Set the startup parameters */
ppc32_reset(cpu);
return(0);
}
/* Delete a PowerPC processor */
void ppc32_delete(cpu_ppc_t *cpu)
{
if (cpu) {
ppc32_mem_shutdown(cpu);
ppc32_jit_shutdown(cpu);
}
}
/* Set the processor version register (PVR) */
void ppc32_set_pvr(cpu_ppc_t *cpu,m_uint32_t pvr)
{
cpu->pvr = pvr;
ppc32_mem_restart(cpu);
}
/* Set idle PC value */
void ppc32_set_idle_pc(cpu_gen_t *cpu,m_uint64_t addr)
{
CPU_PPC32(cpu)->idle_pc = (m_uint32_t)addr;
}
/* Timer IRQ */
void *ppc32_timer_irq_run(cpu_ppc_t *cpu)
{
pthread_mutex_t umutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t ucond = PTHREAD_COND_INITIALIZER;
struct timespec t_spc;
m_tmcnt_t expire;
u_int interval;
u_int threshold;
#if 0
while(!cpu->timer_irq_armed)
sleep(1);
#endif
interval = 1000000 / cpu->timer_irq_freq;
threshold = cpu->timer_irq_freq * 10;
expire = m_gettime_usec() + interval;
while(cpu->gen->state != CPU_STATE_HALTED) {
pthread_mutex_lock(&umutex);
t_spc.tv_sec = expire / 1000000;
t_spc.tv_nsec = (expire % 1000000) * 1000;
pthread_cond_timedwait(&ucond,&umutex,&t_spc);
pthread_mutex_unlock(&umutex);
if (likely(!cpu->irq_disable) &&
likely(cpu->gen->state == CPU_STATE_RUNNING) &&
likely(cpu->msr & PPC32_MSR_EE))
{
cpu->timer_irq_pending++;
if (unlikely(cpu->timer_irq_pending > threshold)) {
cpu->timer_irq_pending = 0;
cpu->timer_drift++;
#if 0
printf("Timer IRQ not accurate (%u pending IRQ): "
"reduce the \"--timer-irq-check-itv\" parameter "
"(current value: %u)\n",
cpu->timer_irq_pending,cpu->timer_irq_check_itv);
#endif
}
}
expire += interval;
}
return NULL;
}
#define IDLE_HASH_SIZE 8192
/* Idle PC hash item */
struct ppc32_idle_pc_hash {
m_uint32_t ia;
u_int count;
struct ppc32_idle_pc_hash *next;
};
/* Determine an "idling" PC */
int ppc32_get_idling_pc(cpu_gen_t *cpu)
{
cpu_ppc_t *pcpu = CPU_PPC32(cpu);
struct ppc32_idle_pc_hash **pc_hash,*p;
struct cpu_idle_pc *res;
u_int h_index,res_count;
m_uint32_t cur_ia;
int i;
cpu->idle_pc_prop_count = 0;
if (pcpu->idle_pc != 0) {
printf("\nYou already use an idle PC, using the calibration would give "
"incorrect results.\n");
return(-1);
}
printf("\nPlease wait while gathering statistics...\n");
pc_hash = calloc(IDLE_HASH_SIZE,sizeof(struct ppc32_idle_pc_hash *));
/* Disable IRQ */
pcpu->irq_disable = TRUE;
/* Take 1000 measures, each mesure every 10ms */
for(i=0;i<1000;i++) {
cur_ia = pcpu->ia;
h_index = (cur_ia >> 2) & (IDLE_HASH_SIZE-1);
for(p=pc_hash[h_index];p;p=p->next)
if (p->ia == cur_ia) {
p->count++;
break;
}
if (!p) {
if ((p = malloc(sizeof(*p)))) {
p->ia = cur_ia;
p->count = 1;
p->next = pc_hash[h_index];
pc_hash[h_index] = p;
}
}
usleep(10000);
}
/* Select PCs */
for(i=0,res_count=0;i<IDLE_HASH_SIZE;i++) {
for(p=pc_hash[i];p;p=p->next)
if ((p->count >= 20) && (p->count <= 80)) {
res = &cpu->idle_pc_prop[cpu->idle_pc_prop_count++];
res->pc = p->ia;
res->count = p->count;
if (cpu->idle_pc_prop_count >= CPU_IDLE_PC_MAX_RES)
goto done;
}
}
done:
/* Set idle PC */
if (cpu->idle_pc_prop_count) {
printf("Done. Suggested idling PC:\n");
for(i=0;i<cpu->idle_pc_prop_count;i++) {
printf(" 0x%llx (count=%u)\n",
cpu->idle_pc_prop[i].pc,
cpu->idle_pc_prop[i].count);
}
printf("Restart the emulator with \"--idle-pc=0x%llx\" (for example)\n",
cpu->idle_pc_prop[0].pc);
} else {
printf("Done. No suggestion for idling PC, dumping the full table:\n");
for(i=0;i<IDLE_HASH_SIZE;i++)
for(p=pc_hash[i];p;p=p->next) {
printf(" 0x%8.8x (%3u)\n",p->ia,p->count);
if (cpu->idle_pc_prop_count < CPU_IDLE_PC_MAX_RES) {
res = &cpu->idle_pc_prop[cpu->idle_pc_prop_count++];
res->pc = p->ia;
res->count = p->count;
}
}
printf("\n");
}
/* Re-enable IRQ */
pcpu->irq_disable = FALSE;
return(0);
}
#if 0
/* Set an IRQ (VM IRQ standard routing) */
void ppc32_vm_set_irq(vm_instance_t *vm,u_int irq)
{
cpu_ppc_t *boot_cpu;
boot_cpu = CPU_PPC32(vm->boot_cpu);
if (boot_cpu->irq_disable) {
boot_cpu->irq_pending = 0;
return;
}
ppc32_set_irq(boot_cpu,irq);
if (boot_cpu->irq_idle_preempt[irq])
cpu_idle_break_wait(vm->boot_cpu);
}
/* Clear an IRQ (VM IRQ standard routing) */
void ppc32_vm_clear_irq(vm_instance_t *vm,u_int irq)
{
cpu_ppc_t *boot_cpu;
boot_cpu = CPU_PPC32(vm->boot_cpu);
ppc32_clear_irq(boot_cpu,irq);
}
#endif
/* Generate an exception */
void ppc32_trigger_exception(cpu_ppc_t *cpu,u_int exc_vector)
{
//printf("TRIGGER_EXCEPTION: saving cpu->ia=0x%8.8x, msr=0x%8.8x\n",
// cpu->ia,cpu->msr);
/* Save the return instruction address */
cpu->srr0 = cpu->ia;
if (exc_vector == PPC32_EXC_SYSCALL)
cpu->srr0 += sizeof(ppc_insn_t);
//printf("SRR0 = 0x%8.8x\n",cpu->srr0);
/* Save Machine State Register (MSR) */
cpu->srr1 = cpu->msr & PPC32_EXC_SRR1_MASK;
//printf("SRR1 = 0x%8.8x\n",cpu->srr1);
/* Set the new SRR value */
cpu->msr &= ~PPC32_EXC_MSR_MASK;
cpu->irq_check = FALSE;
//printf("MSR = 0x%8.8x\n",cpu->msr);
/* Use bootstrap vectors ? */
if (cpu->msr & PPC32_MSR_IP)
cpu->ia = 0xFFF00000 + exc_vector;
else
cpu->ia = exc_vector;
}
/* Trigger IRQs */
fastcall void ppc32_trigger_irq(cpu_ppc_t *cpu)
{
if (unlikely(cpu->irq_disable)) {
cpu->irq_pending = FALSE;
cpu->irq_check = FALSE;
return;
}
/* Clear the IRQ check flag */
cpu->irq_check = FALSE;
if (cpu->irq_pending && (cpu->msr & PPC32_MSR_EE)) {
cpu->irq_count++;
cpu->irq_pending = FALSE;
ppc32_trigger_exception(cpu,PPC32_EXC_EXT);
}
}
/* Trigger the decrementer exception */
void ppc32_trigger_timer_irq(cpu_ppc_t *cpu)
{
cpu->timer_irq_count++;
if (cpu->msr & PPC32_MSR_EE)
ppc32_trigger_exception(cpu,PPC32_EXC_DEC);
}
/* Virtual breakpoint */
fastcall void ppc32_run_breakpoint(cpu_ppc_t *cpu)
{
cpu_log(cpu->gen,"BREAKPOINT",
"Virtual breakpoint reached at IA=0x%8.8x\n",cpu->ia);
printf("[[[ Virtual Breakpoint reached at IA=0x%8.8x LR=0x%8.8x]]]\n",
cpu->ia,cpu->lr);
ppc32_dump_regs(cpu->gen);
}
/* Add a virtual breakpoint */
int ppc32_add_breakpoint(cpu_gen_t *cpu,m_uint64_t ia)
{
cpu_ppc_t *pcpu = CPU_PPC32(cpu);
int i;
for(i=0;i<PPC32_MAX_BREAKPOINTS;i++)
if (!pcpu->breakpoints[i])
break;
if (i == PPC32_MAX_BREAKPOINTS)
return(-1);
pcpu->breakpoints[i] = ia;
pcpu->breakpoints_enabled = TRUE;
return(0);
}
/* Remove a virtual breakpoint */
void ppc32_remove_breakpoint(cpu_gen_t *cpu,m_uint64_t ia)
{
cpu_ppc_t *pcpu = CPU_PPC32(cpu);
int i,j;
for(i=0;i<PPC32_MAX_BREAKPOINTS;i++)
if (pcpu->breakpoints[i] == ia)
{
for(j=i;j<PPC32_MAX_BREAKPOINTS-1;j++)
pcpu->breakpoints[j] = pcpu->breakpoints[j+1];
pcpu->breakpoints[PPC32_MAX_BREAKPOINTS-1] = 0;
}
for(i=0;i<PPC32_MAX_BREAKPOINTS;i++)
if (pcpu->breakpoints[i] != 0)
return;
pcpu->breakpoints_enabled = FALSE;
}
/* Set a register */
void ppc32_reg_set(cpu_gen_t *cpu,u_int reg,m_uint64_t val)
{
if (reg < PPC32_GPR_NR)
CPU_PPC32(cpu)->gpr[reg] = (m_uint32_t)val;
}
/* Dump registers of a PowerPC processor */
void ppc32_dump_regs(cpu_gen_t *cpu)
{
cpu_ppc_t *pcpu = CPU_PPC32(cpu);
int i;
printf("PowerPC Registers:\n");
for(i=0;i<PPC32_GPR_NR/4;i++) {
printf(" $%2d = 0x%8.8x $%2d = 0x%8.8x"
" $%2d = 0x%8.8x $%2d = 0x%8.8x\n",
i*4, pcpu->gpr[i*4], (i*4)+1, pcpu->gpr[(i*4)+1],
(i*4)+2, pcpu->gpr[(i*4)+2], (i*4)+3, pcpu->gpr[(i*4)+3]);
}
printf("\n");
printf(" ia = 0x%8.8x, lr = 0x%8.8x\n", pcpu->ia, pcpu->lr);
printf(" cr = 0x%8.8x, msr = 0x%8.8x, xer = 0x%8.8x, dec = 0x%8.8x\n",
ppc32_get_cr(pcpu), pcpu->msr,
pcpu->xer | (pcpu->xer_ca << PPC32_XER_CA_BIT),
pcpu->dec);
printf(" sprg[0] = 0x%8.8x, sprg[1] = 0x%8.8x\n",
pcpu->sprg[0],pcpu->sprg[1]);
printf(" sprg[2] = 0x%8.8x, sprg[3] = 0x%8.8x\n",
pcpu->sprg[2],pcpu->sprg[3]);
printf("\n IRQ count: %llu, IRQ false positives: %llu, "
"IRQ Pending: %u, IRQ Check: %s\n",
pcpu->irq_count,pcpu->irq_fp_count,pcpu->irq_pending,
pcpu->irq_check ? "yes" : "no");
printf(" Timer IRQ count: %llu, pending: %u, timer drift: %u\n\n",
pcpu->timer_irq_count,pcpu->timer_irq_pending,pcpu->timer_drift);
printf(" Device access count: %llu\n",cpu->dev_access_counter);
printf("\n");
}
/* Dump BAT registers */
static void ppc32_dump_bat(cpu_ppc_t *cpu,int index)
{
int i;
for(i=0;i<PPC32_BAT_NR;i++)
printf(" BAT[%d] = 0x%8.8x 0x%8.8x\n",
i,cpu->bat[index][i].reg[0],cpu->bat[index][i].reg[1]);
}
/* Dump MMU registers */
void ppc32_dump_mmu(cpu_gen_t *cpu)
{
cpu_ppc_t *pcpu = CPU_PPC32(cpu);
int i;
printf("PowerPC MMU Registers:\n");
printf(" - IBAT Registers:\n");
ppc32_dump_bat(pcpu,PPC32_IBAT_IDX);
printf(" - DBAT Registers:\n");
ppc32_dump_bat(pcpu,PPC32_DBAT_IDX);
printf(" - Segment Registers:\n");
for(i=0;i<PPC32_SR_NR;i++)
printf(" SR[%d] = 0x%8.8x\n",i,pcpu->sr[i]);
printf(" - SDR1: 0x%8.8x\n",pcpu->sdr1);
}
/* Load a raw image into the simulated memory */
int ppc32_load_raw_image(cpu_ppc_t *cpu,char *filename,m_uint32_t vaddr)
{
struct stat file_info;
size_t len,clen;
m_uint32_t remain;
void *haddr;
FILE *bfd;
if (!(bfd = fopen(filename,"r"))) {
perror("fopen");
return(-1);
}
if (fstat(fileno(bfd),&file_info) == -1) {
perror("stat");
return(-1);
}
len = file_info.st_size;
printf("Loading RAW file '%s' at virtual address 0x%8.8x (size=%lu)\n",
filename,vaddr,(u_long)len);
while(len > 0)
{
haddr = cpu->mem_op_lookup(cpu,vaddr,PPC32_MTS_DCACHE);
if (!haddr) {
fprintf(stderr,"load_raw_image: invalid load address 0x%8.8x\n",
vaddr);
return(-1);
}
if (len > PPC32_MIN_PAGE_SIZE)
clen = PPC32_MIN_PAGE_SIZE;
else
clen = len;
remain = MIPS_MIN_PAGE_SIZE;
remain -= (vaddr - (vaddr & MIPS_MIN_PAGE_MASK));
clen = m_min(clen,remain);
if (fread((u_char *)haddr,clen,1,bfd) != 1)
break;
vaddr += clen;
len -= clen;
}
fclose(bfd);
return(0);
}
/* Load an ELF image into the simulated memory */
int ppc32_load_elf_image(cpu_ppc_t *cpu,char *filename,int skip_load,
m_uint32_t *entry_point)
{
m_uint32_t vaddr,remain;
void *haddr;
Elf32_Ehdr *ehdr;
Elf32_Shdr *shdr;
Elf_Scn *scn;
Elf *img_elf;
size_t len,clen;
char *name;
int i,fd;
FILE *bfd;
if (!filename)
return(-1);
#ifdef __CYGWIN__
fd = open(filename,O_RDONLY|O_BINARY);
#else
fd = open(filename,O_RDONLY);
#endif
if (fd == -1) {
perror("load_elf_image: open");
return(-1);
}
if (elf_version(EV_CURRENT) == EV_NONE) {
fprintf(stderr,"load_elf_image: library out of date\n");
return(-1);
}
if (!(img_elf = elf_begin(fd,ELF_C_READ,NULL))) {
fprintf(stderr,"load_elf_image: elf_begin: %s\n",
elf_errmsg(elf_errno()));
return(-1);
}
if (!(ehdr = elf32_getehdr(img_elf))) {
fprintf(stderr,"load_elf_image: invalid ELF file\n");
return(-1);
}
printf("Loading ELF file '%s'...\n",filename);
bfd = fdopen(fd,"rb");
if (!bfd) {
perror("load_elf_image: fdopen");
return(-1);
}
if (!skip_load) {
for(i=0;i<ehdr->e_shnum;i++) {
scn = elf_getscn(img_elf,i);
shdr = elf32_getshdr(scn);
name = elf_strptr(img_elf, ehdr->e_shstrndx, (size_t)shdr->sh_name);
len = shdr->sh_size;
if (!(shdr->sh_flags & SHF_ALLOC) || !len)
continue;
fseek(bfd,shdr->sh_offset,SEEK_SET);
vaddr = shdr->sh_addr;
if (cpu->vm->debug_level > 0) {
printf(" * Adding section at virtual address 0x%8.8x "
"(len=0x%8.8lx)\n",vaddr,(u_long)len);
}
while(len > 0)
{
haddr = cpu->mem_op_lookup(cpu,vaddr,PPC32_MTS_DCACHE);
if (!haddr) {
fprintf(stderr,"load_elf_image: invalid load address 0x%x\n",
vaddr);
return(-1);
}
if (len > PPC32_MIN_PAGE_SIZE)
clen = PPC32_MIN_PAGE_SIZE;
else
clen = len;
remain = PPC32_MIN_PAGE_SIZE;
remain -= (vaddr - (vaddr & PPC32_MIN_PAGE_MASK));
clen = m_min(clen,remain);
if (fread((u_char *)haddr,clen,1,bfd) < 1)
break;
vaddr += clen;
len -= clen;
}
}
} else {
printf("ELF loading skipped, using a ghost RAM file.\n");
}
printf("ELF entry point: 0x%x\n",ehdr->e_entry);
if (entry_point)
*entry_point = ehdr->e_entry;
elf_end(img_elf);
fclose(bfd);
return(0);
}