Source to mint/dos.c
/*
* This file has been modified as part of the FreeMiNT project. See
* the file Changes.MH for details and dates.
*/
/*
Copyright 1990,1991,1992 Eric R. Smith.
Copyright 1992,1993,1994 Atari Corporation.
All rights reserved.
*/
/* miscellaneous DOS functions, and the DOS initialization function */
#include "mint.h"
#ifdef MAC
#include <Memory.h>
#endif
#define DOS_MAX 0x160
#define Super_Stack_Size 65536
Func dos_tab[DOS_MAX];
short dos_max = DOS_MAX;
long ARGS_ON_STACK
s_version (void)
{
return Sversion();
}
/*
* Super(new_ssp): change to supervisor mode.
*/
long ARGS_ON_STACK
s_uper (long new_ssp)
{
int in_super;
long r;
TRACE(("Super"));
in_super = curproc->ctxt[SYSCALL].sr & 0x2000;
if (new_ssp == 1) {
r = in_super ? -1L : 0;
}
else {
curproc->ctxt[SYSCALL].sr ^= 0x2000;
r = curproc->ctxt[SYSCALL].ssp;
if (in_super) {
if (new_ssp == 0) {
DEBUG(("bad Super call"));
raise(SIGSYS);
}
else {
curproc->ctxt[SYSCALL].usp =
curproc->ctxt[SYSCALL].ssp;
curproc->ctxt[SYSCALL].ssp = new_ssp;
#ifdef MAC
if HAS_VM
if (UnholdMemory(curproc->held_ssp,Super_Stack_Size) !=0)
DEBUG(("Failure to unhold memory in Super call"));
#endif
}
}
else {
curproc->ctxt[SYSCALL].ssp =
new_ssp ? new_ssp : curproc->ctxt[SYSCALL].usp;
#ifdef MAC
if HAS_VM {
curproc->held_ssp =(void *) (curproc->ctxt[SYSCALL].ssp-16384);
if (HoldMemory(curproc->held_ssp,Super_Stack_Size)!=0) {
curproc->ctxt[SYSCALL].ssp = r;
DEBUG(("Failure to hold memory"));
curproc->ctxt[SYSCALL].sr ^= 0x2000;
raise(SIGSYS);
}
}
#endif
}
}
return r;
}
/*
* get/set time and date functions
*/
long ARGS_ON_STACK t_getdate(void) { return datestamp; }
long ARGS_ON_STACK t_gettime(void) { return timestamp; }
long ARGS_ON_STACK
t_setdate (int date)
{
long r;
/* Only the superuser may set date or time */
if (curproc->euid != 0)
return EACCDN;
r = Tsetdate(date);
datestamp = Tgetdate();
return r;
}
long ARGS_ON_STACK
t_settime (int time)
{
long r;
if (curproc->euid != 0)
return EACCDN;
r = Tsettime(time);
timestamp = Tgettime();
return r;
}
/*
* GEMDOS extension: Syield(): give up the processor if any other
* processes are waiting. Always returns 0.
*/
long ARGS_ON_STACK
s_yield (void)
{
/* reward the nice process */
curproc->curpri = curproc->pri;
sleep(READY_Q, curproc->wait_cond);
return 0;
}
/*
* GEMDOS extension:
* Prenice(pid, delta) sets the process priority level for process pid.
* A "nice" value < 0 increases priority, one > 0 decreases it.
* Always returns the new priority (so Prenice(pid, 0) queries the current
* priority).
*
* NOTE: for backward compatibility, Pnice(delta) is provided and is equivalent
* to Prenice(Pgetpid(), delta)
*/
long ARGS_ON_STACK
p_renice (int pid, int delta)
{
PROC *p;
if (pid <= 0 || 0 == (p = pid2proc(pid))) {
return EFILNF;
}
if (curproc->euid && curproc->euid != p->ruid
&& curproc->ruid != p->ruid) {
DEBUG(("Prenice: process ownership error"));
return EACCDN;
}
p->pri -= delta;
if (p->pri < MIN_NICE) p->pri = MIN_NICE;
if (p->pri > MAX_NICE) p->pri = MAX_NICE;
p->curpri = p->pri;
return ((long)p->pri) & 0x0ffff;
}
long ARGS_ON_STACK
p_nice (int delta)
{
return p_renice(curproc->pid,delta);
}
/*
* GEMDOS extensions: routines for getting/setting process i.d.'s and
* user i.d.'s
*/
long ARGS_ON_STACK p_getpid (void) { return curproc->pid; }
long ARGS_ON_STACK p_getppid (void) { return curproc->ppid; }
long ARGS_ON_STACK p_getpgrp (void) { return curproc->pgrp; }
/* note: Psetpgrp(0, ...) is equivalent to Psetpgrp(Pgetpid(), ...) */
/* also note: Psetpgrp(x, 0) is equivalent to Psetpgrp(x, x) */
long ARGS_ON_STACK
p_setpgrp (int pid, int newgrp)
{
PROC *p;
if (pid == 0)
p = curproc;
else if (0 == (p = pid2proc(pid)))
return EFILNF;
if ( (curproc->euid) && (p->ruid != curproc->ruid)
&& (p->ppid != curproc->pid) )
return EACCDN;
if (newgrp < 0)
return p->pgrp;
if (newgrp == 0)
newgrp = p->pid;
return (p->pgrp = newgrp);
}
long ARGS_ON_STACK p_getuid (void) { return curproc->ruid; }
long ARGS_ON_STACK p_getgid (void) { return curproc->rgid; }
long ARGS_ON_STACK p_geteuid (void) { return curproc->euid; }
long ARGS_ON_STACK p_getegid (void) { return curproc->egid; }
long ARGS_ON_STACK
p_setuid (int uid)
{
if (curproc->euid == 0)
curproc->ruid = curproc->euid = curproc->suid = uid;
else if ((uid == curproc->ruid) || (uid == curproc->suid))
curproc->euid = uid;
else
return EACCDN;
return uid;
}
long ARGS_ON_STACK
p_setgid (int gid)
{
if (curproc->euid == 0)
curproc->rgid = curproc->egid = curproc->sgid = gid;
else if ((gid == curproc->rgid) || (gid == curproc->sgid))
curproc->egid = gid;
else
return EACCDN;
return gid;
}
/* uk, blank: set effective uid/gid but leave the real uid/gid unchanged. */
long ARGS_ON_STACK
p_setreuid (int ruid, int euid)
{
int old_ruid = curproc->ruid;
if (ruid != -1) {
if (curproc->euid == ruid || old_ruid == ruid || curproc->euid == 0)
curproc->ruid = ruid;
else
return(EACCDN);
}
if (euid != -1) {
if (curproc->euid == euid || old_ruid == euid || curproc->suid == euid || curproc->euid == 0)
curproc->euid = euid;
else {
curproc->ruid = old_ruid;
return(EACCDN);
}
}
if (ruid != -1 || (euid != -1 && euid != old_ruid))
curproc->suid = curproc->euid;
return 0;
}
long ARGS_ON_STACK
p_setregid (int rgid, int egid)
{
int old_rgid = curproc->rgid;
if (rgid != -1) {
if ((curproc->egid == rgid) || (old_rgid == rgid) || (curproc->euid == 0))
curproc->rgid = rgid;
else
return(EACCDN);
}
if (egid != -1) {
if ((curproc->egid == egid) || (old_rgid == egid) || (curproc->sgid == egid) || (curproc->euid == 0))
curproc->egid = egid;
else {
curproc->rgid = old_rgid;
return(EACCDN);
}
}
if (rgid != -1 || (egid != -1 && egid != old_rgid))
curproc->sgid = curproc->egid;
return 0;
}
long ARGS_ON_STACK
p_seteuid(int euid)
{
if (!p_setreuid (-1, euid))
return euid;
return EACCDN;
}
long ARGS_ON_STACK
p_setegid(int egid)
{
if (!p_setregid (-1, egid))
return egid;
return EACCDN;
}
/* tesche: audit user id functions, these id's never change once set to != 0
* and can therefore be used to determine who the initially logged in user was.
*/
long ARGS_ON_STACK
p_getauid (void)
{
return curproc->auid;
}
long ARGS_ON_STACK
p_setauid (int id)
{
if (curproc->auid)
return EACCDN; /* this may only be changed once */
return (curproc->auid = id);
}
/* tesche: get/set supplemantary group id's.
*/
long ARGS_ON_STACK
p_getgroups (int gidsetlen, int gidset[])
{
int i;
if (gidsetlen == 0)
return curproc->ngroups;
if (gidsetlen < curproc->ngroups)
return ERANGE;
for (i=0; i<curproc->ngroups; i++)
gidset[i] = curproc->ngroup[i];
return curproc->ngroups;
}
long ARGS_ON_STACK
p_setgroups (int ngroups, int gidset[])
{
int i;
if (curproc->euid)
return EACCDN; /* only superuser may change this */
if ((ngroups < 0) || (ngroups > NGROUPS_MAX))
return ERANGE;
curproc->ngroups = ngroups;
for (i=0; i<ngroups; i++)
curproc->ngroup[i] = gidset[i];
return ngroups;
}
/*
* a way to get/set process-specific user information. the user information
* longword is set to "arg", unless arg is -1. In any case, the old
* value of the longword is returned.
*/
long ARGS_ON_STACK
p_usrval (long arg)
{
long r;
TRACE(("Pusrval"));
r = curproc->usrdata;
if (arg != -1L)
curproc->usrdata = arg;
return r;
}
/*
* set the file creation mask to "mode". Returns the old value of the
* mask.
*/
long ARGS_ON_STACK
p_umask (unsigned mode)
{
long oldmask = curproc->umask;
curproc->umask = mode & (~S_IFMT);
return oldmask;
}
/*
* get/set the domain of a process. domain 0 is the default (TOS) domain.
* domain 1 is the MiNT domain. for now, domain affects read/write system
* calls and filename translation.
*/
long ARGS_ON_STACK
p_domain (int arg)
{
long r;
TRACE(("Pdomain(%d)", arg));
r = curproc->domain;
if (arg >= 0)
curproc->domain = arg;
return r;
}
/*
* get process resource usage. 8 longwords are returned, as follows:
* r[0] == system time used by process
* r[1] == user time used by process
* r[2] == system time used by process' children
* r[3] == user time used by process' children
* r[4] == memory used by process
* r[5] - r[7]: reserved for future use
*/
long ARGS_ON_STACK
p_rusage (long *r)
{
r[0] = curproc->systime;
r[1] = curproc->usrtime;
r[2] = curproc->chldstime;
r[3] = curproc->chldutime;
r[4] = memused(curproc);
return 0;
}
/*
* get/set resource limits i to value v. The old limit is always returned;
* if v == -1, the limit is unchanged, otherwise it is set to v. Possible
* values for i are:
* 1: max. cpu time (milliseconds)
* 2: max. core memory allowed
* 3: max. amount of malloc'd memory allowed
*/
long ARGS_ON_STACK
p_setlimit (int i, long v)
{
long oldlimit;
switch(i) {
case 1:
oldlimit = curproc->maxcpu;
if (v >= 0) curproc->maxcpu = v;
break;
case 2:
oldlimit = curproc->maxcore;
if (v >= 0) {
curproc->maxcore = v;
recalc_maxmem(curproc);
}
break;
case 3:
oldlimit = curproc->maxdata;
if (v >= 0) {
curproc->maxdata = v;
recalc_maxmem(curproc);
}
break;
default:
DEBUG(("Psetlimit: invalid mode %d", i));
return EINVFN;
}
TRACE(("p_setlimit(%d, %ld): oldlimit = %ld", i, v, oldlimit));
return oldlimit;
}
/*
* pause: just sleeps on IO_Q, with wait_cond == -1. only a signal will
* wake us up
*/
long ARGS_ON_STACK
p_pause (void)
{
TRACE(("Pause"));
sleep(IO_Q, -1L);
return 0;
}
/*
* helper function for t_alarm: this will be called when the timer goes
* off, and raises SIGALRM
*/
static void ARGS_ON_STACK
alarmme (PROC *p)
{
p->alarmtim = 0;
post_sig(p, SIGALRM);
}
/*
* t_alarm(x): set the alarm clock to go off in "x" seconds. returns the
* old value of the alarm clock
*/
long ARGS_ON_STACK
t_alarm (long x)
{
long oldalarm;
oldalarm = t_malarm(x*1000);
oldalarm = (oldalarm+999)/1000; /* convert to seconds */
return oldalarm;
}
/*
* t_malarm(x): set the alarm clock to go off in "x" milliseconds. returns
* the old value ofthe alarm clock
*/
long ARGS_ON_STACK
t_malarm (long x)
{
long oldalarm;
TIMEOUT *t;
/* see how many milliseconds there were to the alarm timeout */
oldalarm = 0;
if (curproc->alarmtim) {
for (t = tlist; t; t = t->next) {
oldalarm += t->when;
if (t == curproc->alarmtim)
goto foundalarm;
}
DEBUG(("Talarm: old alarm not found!"));
oldalarm = 0;
curproc->alarmtim = 0;
foundalarm:
;
}
/* we were just querying the alarm */
if (x < 0)
return oldalarm;
/* cancel old alarm */
if (curproc->alarmtim)
canceltimeout(curproc->alarmtim);
/* add a new alarm, to occur in x milliseconds */
if (x)
curproc->alarmtim = addtimeout(x, alarmme);
else
curproc->alarmtim = 0;
return oldalarm;
}
#define ITIMER_REAL 0
#define ITIMER_VIRTUAL 1
#define ITIMER_PROF 2
/*
* helper function for t_setitimer: this will be called when the ITIMER_REAL
* timer goes off
*/
static void ARGS_ON_STACK
itimer_real_me (PROC *p)
{
PROC *real_curproc;
real_curproc = curproc;
curproc = p;
if (p->itimer[ITIMER_REAL].interval)
p->itimer[ITIMER_REAL].timeout =
addtimeout(p->itimer[ITIMER_REAL].interval, itimer_real_me);
else
p->itimer[ITIMER_REAL].timeout = 0;
curproc = real_curproc;
post_sig(p, SIGALRM);
}
/*
* helper function for t_setitimer: this will be called when the ITIMER_VIRTUAL
* timer goes off
*/
static void ARGS_ON_STACK
itimer_virtual_me (PROC *p)
{
PROC *real_curproc;
long timeleft;
real_curproc = curproc;
curproc = p;
timeleft = p->itimer[ITIMER_VIRTUAL].reqtime
- (p->usrtime - p->itimer[ITIMER_VIRTUAL].startusrtime);
if (timeleft > 0) {
p->itimer[ITIMER_VIRTUAL].timeout =
addtimeout(timeleft, itimer_virtual_me);
} else {
timeleft = p->itimer[ITIMER_VIRTUAL].interval;
if (timeleft == 0) {
p->itimer[ITIMER_VIRTUAL].timeout = 0;
} else {
p->itimer[ITIMER_VIRTUAL].reqtime = timeleft;
p->itimer[ITIMER_VIRTUAL].startsystime = p->systime;
p->itimer[ITIMER_VIRTUAL].startusrtime = p->usrtime;
p->itimer[ITIMER_VIRTUAL].timeout =
addtimeout(timeleft, itimer_virtual_me);
}
post_sig(p, SIGVTALRM);
}
curproc = real_curproc;
}
/*
* helper function for t_setitimer: this will be called when the ITIMER_PROF
* timer goes off
*/
static void ARGS_ON_STACK
itimer_prof_me (PROC *p)
{
PROC *real_curproc;
long timeleft;
real_curproc = curproc;
curproc = p;
timeleft = p->itimer[ITIMER_PROF].reqtime
- (p->usrtime - p->itimer[ITIMER_PROF].startusrtime);
if (timeleft > 0) {
p->itimer[ITIMER_PROF].timeout =
addtimeout(timeleft, itimer_prof_me);
} else {
timeleft = p->itimer[ITIMER_PROF].interval;
if (timeleft == 0) {
p->itimer[ITIMER_PROF].timeout = 0;
} else {
p->itimer[ITIMER_PROF].reqtime = timeleft;
p->itimer[ITIMER_PROF].startsystime = p->systime;
p->itimer[ITIMER_PROF].startusrtime = p->usrtime;
p->itimer[ITIMER_PROF].timeout =
addtimeout(timeleft, itimer_prof_me);
}
post_sig(p, SIGPROF);
}
curproc = real_curproc;
}
/*
* t_setitimer(which, interval, value, ointerval, ovalue):
* schedule an interval timer
* which is ITIMER_REAL (0) for SIGALRM, ITIMER_VIRTUAL (1) for SIGVTALRM,
* or ITIMER_PROF (2) for SIGPROF.
* the rest of the parameters are pointers to millisecond values.
* interval is the value to which the timer will be reset
* value is the current timer value
* ointerval and ovalue are the previous values
*/
long ARGS_ON_STACK
t_setitimer (int which, long *interval, long *value, long *ointerval,
long *ovalue)
{
long oldtimer;
TIMEOUT *t;
void ARGS_ON_STACK (*handler)() = 0;
long tmpold;
if ((which != ITIMER_REAL) && (which != ITIMER_VIRTUAL)
&& (which != ITIMER_PROF)) {
return EINVFN;
}
/* ensure that any addresses specified by the calling process are in that
process's address space
*/
if ((interval && (!(valid_address((long) interval))))
|| (value && (!(valid_address((long) value))))
|| (ointerval && (!(valid_address((long) ointerval))))
|| (ovalue && (!(valid_address((long) ovalue))))) {
return EIMBA;
}
/* see how many milliseconds there were to the timeout */
oldtimer = 0;
if (curproc->itimer[which].timeout) {
for (t = tlist; t; t = t->next) {
oldtimer += t->when;
if (t == curproc->itimer[which].timeout)
goto foundtimer;
}
DEBUG(("Tsetitimer: old timer not found!"));
oldtimer = 0;
foundtimer:
;
}
if (ointerval)
*ointerval = curproc->itimer[which].interval;
if (ovalue) {
if (which == ITIMER_REAL) {
*ovalue = oldtimer;
} else {
tmpold = curproc->itimer[which].reqtime
- (curproc->usrtime - curproc->itimer[which].startusrtime);
if (which == ITIMER_PROF)
tmpold -=
(curproc->systime - curproc->itimer[which].startsystime);
if (tmpold <= 0)
tmpold = 0;
*ovalue = tmpold;
}
}
if (interval)
curproc->itimer[which].interval = *interval;
if (value) {
/* cancel old timer */
if (curproc->itimer[which].timeout)
canceltimeout(curproc->itimer[which].timeout);
curproc->itimer[which].timeout = 0;
/* add a new timer, to occur in x milliseconds */
if (*value) {
curproc->itimer[which].reqtime = *value;
curproc->itimer[which].startsystime =
curproc->systime;
curproc->itimer[which].startusrtime =
curproc->usrtime;
switch (which) {
case ITIMER_REAL:
handler = itimer_real_me;
break;
case ITIMER_VIRTUAL:
handler = itimer_virtual_me;
break;
case ITIMER_PROF:
handler = itimer_prof_me;
break;
default:
break;
}
curproc->itimer[which].timeout =
addtimeout(*value, handler);
}
else
curproc->itimer[which].timeout = 0;
}
return 0;
}
/*
* sysconf(which): returns information about system configuration.
* "which" specifies which aspect of the system configuration is to
* be returned:
* -1 max. value of "which" allowed
* 0 max. number of memory regions per proc
* 1 max. length of Pexec() execution string {ARG_MAX}
* 2 max. number of open files per process {OPEN_MAX}
* 3 number of supplementary group id's {NGROUPS_MAX}
* 4 max. number of processes per uid {CHILD_MAX}
*
* unlimited values (e.g. CHILD_MAX) are returned as 0x7fffffffL
*
* See also Dpathconf() in dosdir.c.
*/
long ARGS_ON_STACK
s_ysconf (int which)
{
if (which == -1)
return 4;
switch(which) {
case 0:
return UNLIMITED;
case 1:
return 126;
case 2:
return MAX_OPEN;
case 3:
return NGROUPS_MAX;
case 4:
return UNLIMITED;
default:
return EINVFN;
}
}
/*
* Salert: send an ALERT message to the user, via the same mechanism
* the kernel does (i.e. u:\pipe\alert, if it's available
*/
long ARGS_ON_STACK
s_alert (char *str)
{
/* how's this for confusing code? _ALERT tries to format the
* string as an alert box; if it fails, we let the full-fledged
* ALERT function (which will try _ALERT, and fail again)
* print the alert to the debugging device
*/
if (_ALERT(str) == 0)
ALERT(str);
return 0;
}
/*
* Suptime: get time in seconds since boot and current load averages from
* kernel.
*/
#include "loadave.h"
long ARGS_ON_STACK
s_uptime (unsigned long *cur_uptime, unsigned long loadaverage[3])
{
*cur_uptime = uptime;
loadaverage[0] = avenrun[0];
loadaverage[1] = avenrun[1];
loadaverage[2] = avenrun[2];
return 0;
}
/* uk: shutdown function
* if the parameter is nonzero, reboot the machine, otherwise
* halt it after syncing the file systems.
*/
/* this is mostly from main.c:
* shut down processes; this involves waking them all up, and sending
* them SIGTERM to give them a chance to clean up after themselves
*/
static void ARGS_ON_STACK
shutmedown (PROC *p)
{
wake(WAIT_Q, (long)s_hutdown);
p->wait_cond = 0;
}
long ARGS_ON_STACK
s_hutdown (long restart)
{
/* only root may shut down the system */
if ((curproc->euid == 0) || (curproc->ruid == 0))
{
PROC *p;
int proc_left = 0;
DEBUG(("Shutting processes down..."));
DEBUG(("This is pid %d", curproc->pid));
/* Ignore signals, that could terminate this process */
curproc->sighandle[SIGCHLD] = SIG_IGN;
curproc->sighandle[SIGTERM] = SIG_IGN;
curproc->sighandle[SIGABRT] = SIG_IGN;
curproc->sighandle[SIGQUIT] = SIG_IGN;
curproc->sighandle[SIGHUP] = SIG_IGN;
for (p = proclist; p; p = p->gl_next) {
if (p->pid == 0) continue;
if (p == curproc) continue; /* curproc is trapped in this code */
if (p->wait_q != ZOMBIE_Q && p->wait_q != TSR_Q) {
if (p->wait_q != READY_Q) {
short sr = spl7();
rm_q(p->wait_q, p);
add_q(READY_Q, p);
spl(sr);
}
DEBUG(("Posting SIGTERM for pid %d", p->pid));
post_sig(p, SIGTERM);
proc_left++;
}
}
if (proc_left) {
/* sleep a little while, to give the other processes a chance to
shut down
*/
if (addtimeout(1000, shutmedown))
do {
DEBUG(("Sleeping..."));
sleep(WAIT_Q, (long)s_hutdown);
} while (curproc->wait_cond == (long)s_hutdown);
DEBUG(("Killing all processes..."));
for (p = proclist; p; p = p->gl_next)
{
if ((p->pid == 0) || (p == curproc))
continue;
DEBUG(("Posting SIGKILL for pid %d", p->pid));
post_sig(p, SIGKILL);
}
}
sys_q[READY_Q] = 0;
DEBUG(("Syncing file systems..."));
close_filesys();
s_ync(); /* additional sync() */
if (restart)
{
DEBUG(("Rebooting..."));
reboot();
}
else
{
DEBUG(("Halting system..."));
halt();
}
}
return EACCDN;
}
/*
* routine for initializing DOS
*
* NOTE: before adding new functions, check the definition of
* DOS_MAX at the top of this file to make sure that there
* is room; if not, increase DOS_MAX.
*/
void
init_dos(void)
{
/* miscellaneous initialization goes here */
/* dos table initialization */
dos_tab[0x00] = p_term0;
dos_tab[0x01] = c_conin;
dos_tab[0x02] = c_conout;
dos_tab[0x03] = c_auxin;
dos_tab[0x04] = c_auxout;
dos_tab[0x05] = c_prnout;
dos_tab[0x06] = c_rawio;
dos_tab[0x07] = c_rawcin;
dos_tab[0x08] = c_necin;
dos_tab[0x09] = c_conws;
dos_tab[0x0a] = c_conrs;
dos_tab[0x0b] = c_conis;
dos_tab[0x0e] = d_setdrv;
dos_tab[0x10] = c_conos;
dos_tab[0x11] = c_prnos;
dos_tab[0x12] = c_auxis;
dos_tab[0x13] = c_auxos;
dos_tab[0x14] = m_addalt;
dos_tab[0x15] = s_realloc;
dos_tab[0x19] = d_getdrv;
dos_tab[0x1a] = f_setdta;
dos_tab[0x20] = s_uper;
dos_tab[0x2a] = t_getdate;
dos_tab[0x2b] = t_setdate;
dos_tab[0x2c] = t_gettime;
dos_tab[0x2d] = t_settime;
dos_tab[0x2f] = f_getdta;
dos_tab[0x30] = s_version;
dos_tab[0x31] = p_termres;
dos_tab[0x36] = d_free;
dos_tab[0x39] = d_create;
dos_tab[0x3a] = d_delete;
dos_tab[0x3b] = d_setpath;
dos_tab[0x3c] = f_create;
dos_tab[0x3d] = f_open;
dos_tab[0x3e] = f_close;
dos_tab[0x3f] = f_read;
dos_tab[0x40] = f_write;
dos_tab[0x41] = f_delete;
dos_tab[0x42] = f_seek;
dos_tab[0x43] = f_attrib;
dos_tab[0x44] = m_xalloc;
dos_tab[0x45] = f_dup;
dos_tab[0x46] = f_force;
dos_tab[0x47] = d_getpath;
dos_tab[0x48] = m_alloc;
dos_tab[0x49] = m_free;
dos_tab[0x4a] = m_shrink;
dos_tab[0x4b] = p_exec;
dos_tab[0x4c] = p_term;
dos_tab[0x4e] = f_sfirst;
dos_tab[0x4f] = f_snext;
dos_tab[0x56] = f_rename;
dos_tab[0x57] = f_datime;
dos_tab[0x5c] = f_lock;
/* MiNT extensions to GEMDOS */
dos_tab[0xff] = s_yield;
dos_tab[0x100] = f_pipe;
dos_tab[0x104] = f_cntl;
dos_tab[0x105] = f_instat;
dos_tab[0x106] = f_outstat;
dos_tab[0x107] = f_getchar;
dos_tab[0x108] = f_putchar;
dos_tab[0x109] = p_wait;
dos_tab[0x10a] = p_nice;
dos_tab[0x10b] = p_getpid;
dos_tab[0x10c] = p_getppid;
dos_tab[0x10d] = p_getpgrp;
dos_tab[0x10e] = p_setpgrp;
dos_tab[0x10f] = p_getuid;
dos_tab[0x110] = p_setuid;
dos_tab[0x111] = p_kill;
dos_tab[0x112] = p_signal;
dos_tab[0x113] = p_vfork;
dos_tab[0x114] = p_getgid;
dos_tab[0x115] = p_setgid;
dos_tab[0x116] = p_sigblock;
dos_tab[0x117] = p_sigsetmask;
dos_tab[0x118] = p_usrval;
dos_tab[0x119] = p_domain;
dos_tab[0x11a] = p_sigreturn;
dos_tab[0x11b] = p_fork;
dos_tab[0x11c] = p_wait3;
dos_tab[0x11d] = f_select;
dos_tab[0x11e] = p_rusage;
dos_tab[0x11f] = p_setlimit;
dos_tab[0x120] = t_alarm;
dos_tab[0x121] = p_pause;
dos_tab[0x122] = s_ysconf;
dos_tab[0x123] = p_sigpending;
dos_tab[0x124] = d_pathconf;
dos_tab[0x125] = p_msg;
dos_tab[0x126] = f_midipipe;
dos_tab[0x127] = p_renice;
dos_tab[0x128] = d_opendir;
dos_tab[0x129] = d_readdir;
dos_tab[0x12a] = d_rewind;
dos_tab[0x12b] = d_closedir;
dos_tab[0x12c] = f_xattr;
dos_tab[0x12d] = f_link;
dos_tab[0x12e] = f_symlink;
dos_tab[0x12f] = f_readlink;
dos_tab[0x130] = d_cntl;
dos_tab[0x131] = f_chown;
dos_tab[0x132] = f_chmod;
dos_tab[0x133] = p_umask;
dos_tab[0x134] = p_semaphore;
dos_tab[0x135] = d_lock;
dos_tab[0x136] = p_sigpause;
dos_tab[0x137] = p_sigaction;
dos_tab[0x138] = p_geteuid;
dos_tab[0x139] = p_getegid;
dos_tab[0x13a] = p_waitpid;
dos_tab[0x13b] = d_getcwd;
dos_tab[0x13c] = s_alert;
dos_tab[0x13d] = t_malarm;
dos_tab[0x13e] = p_sigintr;
dos_tab[0x13f] = s_uptime;
dos_tab[0x142] = d_xreaddir;
dos_tab[0x143] = p_seteuid;
dos_tab[0x144] = p_setegid;
dos_tab[0x145] = p_getauid;
dos_tab[0x146] = p_setauid;
dos_tab[0x147] = p_getgroups;
dos_tab[0x148] = p_setgroups;
dos_tab[0x149] = t_setitimer;
dos_tab[0x14e] = p_setreuid;
dos_tab[0x14f] = p_setregid;
dos_tab[0x150] = s_ync;
dos_tab[0x151] = s_hutdown;
dos_tab[0x152] = d_readlabel;
dos_tab[0x153] = d_writelabel;
}